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REFLECTION SYMMETRIES OF THE q-GENOCCHI

POLYNOMIALS

C.S. RYOO∗

Abstract. One purpose of this paper is to consider the reflection symme-
tries of the q-Genocchi polynomials G∗

n,q(x). We also observe the structure

of the roots of q-Genocchi polynomials, G∗
n,q(x), using numerical investi-

gation. By numerical experiments, we demonstrate a remarkably regular
structure of the real roots of G∗

n,q(x).
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1. Introduction

Many mathematicians have studied Genocchi polynomials and Genocchi num-
bers. Genocchi polynomials and Genocchi numbers posses many interesting
properties and arising in many areas of mathematics and physics. In [1], T.
Kim constructed the q- Genocchi Gn,q and polynomials Gn,q(x) using generat-
ing functions. In order to study the q-Genocchi polynomials Gn,q(x), we must
understand the structure of the q- Genocchi polynomials Gn,q(x). Therefore,
using computer, a realistic study for the q-Genocchi polynomials Gn,q(x) is very
interesting. It is the aim of this paper to consider the reflection symmetries
of the q-Genocchi polynomials Gn,q(x). We also observe the structure of the
roots of the q-Genocchi polynomials Gn,q(x), using numerical investigation. By
numerical experiments, we demonstrate a remarkably regular structure of the
real roots of Gn,q(x). Finally, we give a table for the solutions of our q- Genoc-
chi polynomials. The outline of this paper is as follows. We introduce the q-
Genocchi polynomials Gn,q(x). In Section 2, we consider reflection symmetries
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of the q-Genocchi polynomials Gn,q(x) using a numerical investigation. Finally,
we investigate the roots of the q-Genocchi polynomials G∗

n,q(x). We introduce
the ordinary Euler numbers and Euler polynomials. The usual Euler numbers
En are defined by

F (t) =
2

et + 1
=

∞∑
n=0

En
tn

n!
,

where the symbol Ek is interpreted to mean that Ek must be replaced by Ek

when we expand the one on the left. For any complex number x, it is well known
that the familiar Euler polynomials En(x) are defined by means of the following
generating function:

F (x, t) =
2

et + 1
ext =

∞∑
n=0

En(x)
tn

n!
.

In [1], Kim constructed q-analogue of Euler numbers and polynomials. We now
introduce the q-extension of Euler numbers Eq,n and polynomials En,q(x) (see
[1]). Let us consider a complex number q ∈ C with |q| < 1 as an indeterminate.
The q-analogue of n is denoted by

[n]q =
1− qn

1− q
= 1 + q + q2 + q3 + · · ·+ qn−1.

Let us consider the q-Euler polynomials as follows:

Fq(t) = [2]q

∞∑
n=0

(−1)nqne[n]qt =

∞∑
n=0

En,q
tn

n!
.

Note that limq→1 Fq(t) = F (t) and limq→1 En,q = En. The q-Euler polynomials
En,q(x) are defined by

Fq(x, t) = [2]q

∞∑
n=0

(−1)nqne[n+x]qt =

∞∑
n=0

En,q(x)
tn

n!
.

We easily see that limq→1 Fq(x, t) = F (x, t) and limq→1 En,q(x) = En(x). The
Genocchi numbers Gn are defined by the generating function:

G(t) =
2t

et + 1
=

∞∑
n=0

Gn
tn

n!
, (|t| < π), cf. [1] (1)

where we use the technique method notation by replacing Gn by Gn(n ≥ 0)
symbolically. For x ∈ R (= the field of real numbers), we consider the Genocchi
polynomials Gn(x) as follows:

G(x, t) =
2t

et + 1
ext =

∞∑
n=0

Gn(x)
tn

n!
. (2)
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Note that Gn(x) =
∑n

k=0

(
n
k

)
Gkx

n−k. In the special case x = 0, we define
Gn(0) = Gn. Since

∞∑
n=0

En(x)
tn

n!
=

2t

(et + 1)t
ext =

∞∑

i=0

Gi
ti−1

i!

∞∑

j=0

xj t
j

j!
=

∞∑
n=0

n∑

k=0

Gk+1

k + 1

tk

k!
xn−k tn−k

(n− k)!

=

∞∑
n=0

(
n∑

k=0

(
n

k

)
Gk+1

k + 1
xn−k

)
tn

n!
,

we have

En(x) =

n∑

k=0

(
n

k

)
Gk+1

k + 1
xn−k.

In [1], Kim constructed q-analogue of Genocchi numbers and polynomials. We
now introduce the q-extension of Genocchi numbersGn,q and polynomialsGn,q(x)
(see [4]). We consider the following generating functions:

Gq(t) = [2]qte
t

1−q

∞∑
n=0

(−1)n

1 + qn+1

(
1

1− q

)n
tn

n!
=

∞∑
n=0

Gn,q
tn

n!
, (3)

and

Gq(x, t) = [2]qq
xte

t
1−q

∞∑
n=0

(−1)n

1 + qn+1
qnx

(
1

1− q

)n
tn

n!
=

∞∑
n=0

Gn,q(x)
tn

n!
, (4)

By simple calculation in (4), we obtain

Gn,q(x) = [2]qn

(
1

1− q

)n−1 n−1∑

i=0

(
n− 1

i

)
(−1)i

1 + qi+1
q(i+1)x.

We obtain the first value of the q- Genocchi polynomials Gn,q(x) :

G1,q(x) = qx, G2,q(x) = −2qx(1 + q2 − qx − q1+x)

(−1 + q)(1 + q2)
,

G3,q(x) =
3qx(1− q + 2q2 − q3 + q4 − 2qx + q2x − 2q3+x + q2+2x)

(−1 + q)2(1 + q2)(1− q + q2)
, · · · ,

When x = 0, we write Gn,q = Gn,q(0), which are called the q-Genocchi numbers.
Gn,q(x) is a polynomial of degree = n in qx. We obtain the first value of the q-
Genocchi numbers Gn,q :

G1,q = 1, G2,q = − 2q

1 + q2
,

G3,q =
3(−1 + q)q

(1 + q2)(1− q + q2)
, G4,q = − 4q(1− q − q2 − q3 + q4)

(1 + q2)(1− q + q2)(1 + q4)
, · · · ,
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2. Reflection symmetries on the q-Genocchi polynomials

In this section we consider the reflection symmetries of the q-Genocchi poly-
nomials Gn,q(x). Since

∞∑
n=0

Gn(1− x)
(−t)n

n!
=

−2t

e−t + 1
e(1−x)(−t) =

−2t

et + 1
ext = −

∞∑
n=0

Gn(x)
tn

n!
,

we obtain that

Gn(x) = (−1)n+1Gn(1− x). (5)

We prove that Gn(x), x ∈ C, has Re(x) = 1
2 reflection symmetry in addition

to the usual Im(x) = 0 reflection symmetry analytic complex functions. The
question is: what happens with the reflection symmetry (5), when one considers
the q-Genocchi polynomials? We are going now to reflection at 1

2 of x on the
q-Genocchi polynomials. Since

Gn,q(x) = [2]qn

(
1

1− q

)n−1 n−1∑

i=0

(
n− 1

i

)
(−1)i

1 + qi+1
q(i+1)x,

by simple calculation, we have

Gn,q−1(1− x)

= n(1 + q−1)

(
1

1− q−1

)n−1 n−1∑

i=0

(
n− 1

i

)
(−1)i(q−1)(i+1)(1−x) 1

1 + (q−1)i+1

= n(1 + q−1)

(
q

q − 1

)n−1 n−1∑

i=0

(
n− 1

i

)
(−1)i(q−1)(i+1)(1−x) 1

1 + (q−1)i+1

= n(1 + q−1)

( −q

1− q

)n−1 n−1∑

i=0

(
n− 1

i

)
(−1)iq−(i+1)q(i+1)x 1

q−(i+1)(1 + qi+1)

= (−1)n−1qn−2[2]qn

(
1

1− q

)n−1 n−1∑

i=0

(
n− 1

i

)
(−1)i

1 + qi+1
q(i+1)x.

Hence we obtain the following theorem.

Theorem 1. For n ≥ 0, we have

G∗
n,q(x) ≡ Gn,q−1(1− x) = (−1)n−1qn−2Gn,q(x). (6)

(6) is the q-analog of the classical reflection formula (5). Prove or disprove:
G∗

n,q(x) has Im(x) = 0 reflection symmetry analytic complex functions (Figures
6, 8). G∗

n,q(x) has not Re(x) = 1/2 reflection symmetry ( Figures 6, 8). The
open question is: what happens with the reflection symmetry (6), when one
considers the q-extension of Genocchi polynomials ? We have the first value of
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the q- Genocchi polynomials We have the first value of the q- Genocchi numbers
G∗

n,q :

G∗
1,q =

1

q
, G∗

2,q =
2q

1 + q2
,

G∗
3,q =

3(−1 + q)q2

(1 + q2)(1− q + q2)
, G∗

4,q = − 4q3(1− q − q2 − q3 + q4)

(1 + q2)(1− q + q2)(1 + q4)
, · · · ,

For n = 1, · · · , 10, we can draw a plot of the q- Genocchi numbers E∗
n,q, respec-

tively. This shows the ten plots combined into one. We display the shape of
Gn,q, G

∗
n,q,−9/10 ≤ q ≤ 9/10 (Figures 1, 2). We obtain the first value of the

q-Genocchi polynomials G∗
n,q(x) :

G∗
1,q(x) = q−1+x,

G∗
2,q(x) =

2qx(1 + q2 − qx − q1+x)

(−1 + q)(1 + q2)
,

G∗
3,q(x) =

3q1+x(1− q + 2q2 − q3 + q4 − 2qx + q2x − 2q3+x + q2+2x)

(−1 + q)2(1 + q2)(1− q + q2)
, · · ·

First, we display the shapes of the q-Genocchi polynomials G∗
n,q(x) and we inves-

tigate the zeros of the q-Genocchi polynomials G∗
n,q(x) . For n = 1, · · · , 10, we

can draw a plot of the q-Genocchi polynomials G∗
n,q(x), respectively. This shows

the ten plots combined into one. We display the shape of Gn,q(x), G
∗
n,q(x), n =

1, · · · , 10, q = 1/2.− 1 ≤ x ≤ 1.

Table 1. Numbers of real and complex zeros of G∗
n,q(x)

q = 1
3 q = 1

2
degree n real zeros complex zeros real zeros complex zeros

2 1 0 1 0
3 2 0 2 0
4 1 2 3 0
5 2 2 2 2
6 3 2 3 2
7 2 4 2 4
8 3 4 3 4
9 2 6 4 4
10 3 6 3 6
11 2 8 4 6

We observe a remarkably regular structure of the complex roots of the q-Genocchi
polynomials G∗

n,q(x). We hope to verify a remarkably regular structure of the
complex roots of the q-Genocchi polynomials G∗

n,q(x). (Table 1). Next, we
calculate an approximate solution satisfying G∗

n,q(x), q = 1/2, x ∈ R. The results
are given in Table 2.
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Figure 1. Curvers of Gn,q
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Figure 2. Curvers of G∗
n,q
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Figure 3. Curvers of Gn,q(x)
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Figure 4. Curvers of G∗
n,q(x)

Table 2. Approximate solutions of G∗
n,1/2(x) = 0, x ∈ R

degree n x

2 0.263034

3 −0.195283, 0.610321

4 −0.268477, −0.122484, 0.888461

5 0.119298, 1.11848

6 −0.426196, 0.322836, 1.31475

7 0.505176, 1.48613

8 −0.325429, 0.66923, 1.63838

9 −0.557938, −0.182186, 0.817824, 1.77545

10 −0.0466248, 0.953375, 1.90015

11 −0.605574, 0.0778538, 1.07785, 2.01459
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We investigate the beautiful zeros of the G∗
n,q(x) by using a computer. We

plot the zeros of q-Genocchi polynomials Gn,q(x), G
∗
n,q(x), q = 1/2, n = 20, n =

40, x ∈ C.
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Figure 5. Zeros of G20,q(x)
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Figure 6. Zeros of G∗
20,q(x)
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Figure 7. Zeros of G40,q(x)
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Figure 8. Zeros of G∗
40,q(x)

3. Directions for Further Research

In Figure 5, we choose q = 1/2 and n = 20. In Figure 6, we choose q = 1/2
and n = 20. Obviously, both figures reveal the same zero behaviors. In order to
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understand zero behavior better, we propose Figure 7 and Figure 8. In Figure
7, we choose q = 1/2 and n = 40. In Figure 8, we choose q = 1/2 and n = 40.
More interesting patterns of zero are visualized. Obviously, the zero behavior is
bounded. The theoretical prediction on the boundedness and behavior of zero
is await for further study.

Finally, we shall consider the more general problems. In general, how many
roots does G∗

n,q(x) have ? This is open problem. Prove or disprove: G∗
n,q(x) =

0 has n − 1 distinct solutions. Find the numbers of complex zeros CG∗
n,q(x)

of G∗
n,q(x), Im(x) 6= 0. Since n − 1 is the degree of the polynomial G∗

n,q(x),
the number of real zeros RG∗

n,q(x)
lying on the real plane Im(x) = 0 is then

RG∗
n,q(x)

= n − 1 − CG∗
n,q(x)

, where CE∗
n,q(x)

denotes complex zeros. See Table

1 for tabulated values of RG∗
n,q(x)

and CG∗
n,q(x)

. Find the equation of envelope

curves bounding the real zeros lying on the plane. The author has no doubt that
investigation along this line will lead to a new approach employing numerical
method in the field of research of the q-Genocchi polynomials G∗

n,q(x) to appear
in mathematics and physics. The reader may refer to [2-7] for the details
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