Functional Equations associated with Generalized Bernoulli Numbers and Polynomials

Cheon Seoung Ryoo
Department of Mathematics, Hannam University, Daejeon 306-791, Korea
e-mail: ryoocs@hnu.ac.kr
Dmitry Victorovich Dolgy
Hanrimwon, Kwangwoon University, Seoul 139-701, Korea
School of Natural Sciences, Far Eeastern Federal University, Vladivostok, Russia
e-mail: d_dol@mail.ru

Hyuck In Kwon
Department of Mathematics, Kwangwoon University, Seoul 139-701, Korea
e-mail: sura@kw.ac.kr

Yu Seon Jang*
Department of Applied Mathematics, Kangnam University, Yongin 446-702, Korea
e-mail: ysjang@kangnam.ac.kr
Abstract. In this paper, we investigate the functional equations of the multiple Dirichlet and Hurwitz L-functions associated with Bernoulli numbers and polynomials attached to Dirichlet character.

1. Introduction

Euler's zeta function is defined for any real number s greater than 1 by the infinite sum:

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \tag{1.1}
\end{equation*}
$$

It connects by a continuous parameter all series from (1.1). In 1734 Leonhard

[^0]Euler (1707-1783) found something amazing; namely he determined all values $\zeta(2 n)$, $n \in \mathbb{N}$, a truly remarkable discovery. Ref. ${ }^{[5],}{ }^{[9]}$ He also found a beautiful relationship between prime numbers and $\zeta(s)$ whose significance for current mathematics cannot be overestimated. Ref. [1], [5] This can be written more concisely as an infinite product over all primes p :

$$
\begin{equation*}
\zeta(s)=\prod_{p: \text { prime }} \frac{1}{1-p^{-s}}, s>1 \tag{1.2}
\end{equation*}
$$

Many authors have studied various functions in connection with the Euler's zeta function under various hypotheses. Ref. [7], [11]-[14], [16], [17] Bernhard Riemann (18261866) extended the $\zeta(s)$ as a function of a complex variable $s=x+i y$ rather than a real variable s by meromorphic function. ${ }^{\text {Ref. }}{ }^{[5]}$ In the half plane $\operatorname{Re}(s)>1$ the zeta function is given explicitly by series (1.1), and it is therefore subject to the estimate $|\zeta(s)| \leq \zeta(\operatorname{Re}(s))$. Riemann recognized that there is a rather simple relationship between $\zeta(s)$ and $\zeta(1-s)$ as following;

$$
\begin{equation*}
\zeta(s)=2^{s} \pi^{s-1} \sin \frac{\pi s}{2} \Gamma(1-s) \zeta(1-s) \tag{1.3}
\end{equation*}
$$

where $\Gamma(s)=\int_{0}^{\infty} e^{-t} t^{s-1} d t$ is the gamma function of s. it has good control of the behavior of the zeta function also in the half plane $\operatorname{Re}(s)<0$. Ref. [2], [20]

In number theory, Dirichlet characters are certain arithmetic functions which arise from completely multiplicative characters on the units of $\mathbb{Z} / k \mathbb{Z}$. A Dirichlet character is any function χ from the integers \mathbb{Z} to the complex numbers \mathbb{C} such that χ has the following properties:
(i) There exists a positive integer τ such that $\chi(n)=\chi(n+\tau)$ for all n.
(ii) If $\operatorname{gcd}(n, \tau)>1$ then $\chi(n)=0$; if $\operatorname{gcd}(n, \tau)=1$ then $\chi(n) \neq 0$.
(iii) $\chi(m n)=\chi(m) \chi(n)$ for all integers m and n.

The unique character of period 1 is called the trivial character and the smallest positive integer τ in (i) and (ii) is called the conductor of χ. Dirichlet characters are used to define Dirichlet L-functions, which are meromorphic functions with a variety of interesting analytic properties. If χ is a Dirichlet character, The L-series attached to χ is defined by

$$
\begin{equation*}
L(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}, \quad \operatorname{Re}(s)>1 \tag{1.4}
\end{equation*}
$$

This function can be extended to a meromorphic function on the whole complex plane and are generalizations of the Riemann zeta-function. This can be expressed by the partial zeta functions as follows; ${ }^{\text {Ref. [18], [19] }}$

$$
\begin{equation*}
L(s, \chi)=\sum_{a=1}^{\tau} \chi(a) \tau^{-s} \zeta\left(s, \frac{a}{\tau}\right) \tag{1.5}
\end{equation*}
$$

where $\zeta(s, x)$ are Hurwitz zeta function defined by

$$
\begin{equation*}
\zeta(s, x)=\sum_{n=1}^{\infty} \frac{1}{(n+x)^{s}}, \quad \operatorname{Re}(s)>1, x>0 \tag{1.6}
\end{equation*}
$$

The generalized Bernoulli numbers attached to $\chi, B_{n, \chi}, n=0,1, \cdots$, are defined by the exponential generating function to be

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{n, \chi} \frac{t^{n}}{n!}=\sum_{a=1}^{\tau} \frac{\chi(a) t e^{a t}}{e^{\tau t}-1}, \quad|t|<\frac{2 \pi}{\tau} \tag{1.7}
\end{equation*}
$$

There is a relation between $B_{n, \chi}$ and $B_{n}(x)$ as following;

$$
\begin{equation*}
B_{n, \chi}=\tau^{n-1} \sum_{a=1}^{\tau} \chi(a) B_{n}\left(\frac{a}{\tau}\right) \tag{1.8}
\end{equation*}
$$

where $B_{n}(x), n=0,1, \cdots$ are Bernoulli polynomials defined by

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!}=\frac{t}{e^{t}-1} e^{x t}, \quad|t|<2 \pi . \text { Ref. [3], [6], [8], [15] } \tag{1.9}
\end{equation*}
$$

For the special values at non-positive integers $s=1-n(n=1,2, \cdots), L(s, \chi)$ can be expressed by the generalized Bernoulli numbers $B_{n, \chi}$ as following;

$$
\begin{equation*}
L(1-n, \chi)=-\frac{B_{n, \chi}}{n} . \tag{1.10}
\end{equation*}
$$

This was found by many authors including Washington. ${ }^{\text {Ref. [4], [10], [20], [21] }}$ In this paper, we investigate the functional equations of the multiple Dirichlet and Hurwitz L-functions associated with Bernoulli numbers and polynomials attached to Dirichlet character.

2. Functional Equations

For any natural number $k \in \mathbb{N}$, the high-order Bernoulli polynomials with order $k, B_{n}^{(k)}(x), n=0,1, \cdots$, are defined by the exponential generating functions to be

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{n}^{(k)}(x) \frac{t^{n}}{n!}=\left(\frac{t}{e^{t}-1}\right)^{k} e^{x t} \tag{2.1}
\end{equation*}
$$

When $x=0$, the numbers $B_{n}^{(k)}=B_{n}^{(k)}(0), n=1,2, \cdots$ are called the higher-order Bernoulli numbers with order k. In complex plane \mathbb{C}, the gamma function is defined as an improper integral for $\operatorname{Re}(s)>0$

$$
\begin{equation*}
\Gamma(s)=\int_{0}^{\infty} t^{s-1} e^{-t} d t \tag{2.2}
\end{equation*}
$$

Replacing s by $1-s$, we know that for $\operatorname{Re}(s)<1$

$$
\begin{equation*}
\Gamma(1-s)=\int_{0}^{\infty} \frac{e^{-t}}{t^{s}} d t \tag{2.3}
\end{equation*}
$$

For $s=n \in \mathbb{N}$ in (2.3), since the complex function e^{-z} / z^{n} has a pole of order n at 0 , from the Cauchy Residue Theorem, we know that the contour integral is

$$
\begin{equation*}
\oint_{C_{0}} \frac{e^{-z}}{z^{n}} d z=2 \pi i \lim _{z \rightarrow 0} \frac{1}{(n-1)!} \frac{d^{n-1}}{d z^{n-1}}\left[z^{n} f(z)\right]=\frac{(-1)^{n-1}}{(n-1)!} 2 \pi i, \tag{2.4}
\end{equation*}
$$

where C_{0} is any circle centered at 0 and $i=\sqrt{-1}$. Observe that for any complex s with $\operatorname{Re}(s)>1$

$$
\begin{equation*}
\int_{0}^{\infty} \frac{t}{e^{t}-1} t^{s-1} d t=\sum_{m=0}^{\infty} \frac{1}{(m+1)^{s}} \int_{0}^{\infty} e^{-y} y^{s-1} d y \tag{2.5}
\end{equation*}
$$

So we have

$$
\begin{equation*}
\zeta(s)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} \frac{1}{e^{t}-1} t^{s-2} d t \tag{2.6}
\end{equation*}
$$

Consider the Generalized Hurwitz zeta functions, the multiple Hurwitz zeta functions with order k are defined by

$$
\begin{equation*}
\zeta_{k}(s, x)=\sum_{n_{1}, \cdots, n_{k}=0}^{\infty} \frac{1}{\left(n_{1}+\cdots+n_{k}+x\right)^{s}} \tag{2.7}
\end{equation*}
$$

for $\operatorname{Re}(s)>1$ and $x>0$. Observe that

$$
\begin{align*}
\zeta_{k}(s, x) & =\frac{1}{\Gamma(s)} \sum_{n=0}^{\infty}\binom{n+k-1}{n} \int_{0}^{\infty} e^{-(n+x) t} t^{s-1} d t \tag{2.8}\\
& =\frac{1}{\Gamma(s)} \sum_{n=0}^{\infty}\binom{n+k-1}{n} \frac{1}{(n+x)^{s}} \int_{0}^{\infty} e^{-y} y^{s-1} d y .
\end{align*}
$$

Then the generalized Hurwitz zeta function can be expressed as follows;

$$
\begin{equation*}
\zeta_{k}(s, x)=\sum_{n=0}^{\infty}\binom{n+k-1}{n} \frac{1}{(n+x)^{s}} \tag{2.9}
\end{equation*}
$$

Lemma 2.1. For $k \in \mathbb{N}$, we have

$$
\zeta_{k}(s, x)=\frac{1}{\Gamma(s)} \int_{0}^{\infty}\left(\frac{1}{1-e^{-t}}\right)^{k} e^{-x t} t^{s-1} d t
$$

where $\operatorname{Re}(s)>1$ and $x>0$.
Proof. Since

$$
\frac{e^{t}}{e^{t}-1}=1+\frac{1}{e^{t}}+\frac{1}{e^{2 t}}+\cdots=\sum_{n=0}^{\infty}\left(\frac{1}{e^{t}}\right)^{n}
$$

thus we have

$$
\begin{align*}
\frac{1}{\Gamma(s)} \int_{0}^{\infty}\left(\frac{t}{1-e^{-t}}\right)^{k} e^{-x t} t^{s-k-1} d t & =\int_{0}^{\infty}\left(\sum_{n_{1}=0}^{\infty} e^{-n_{1} t} \cdots \sum_{n_{k}=0}^{\infty} e^{-n_{k} t}\right) e^{-x t} t^{s-1} d t \tag{2.10}\\
& =\sum_{n_{1}, \cdots, n_{k}=0}^{\infty} \int_{0}^{\infty} e^{-\left(n_{1}+\cdots+n_{k}+x\right) t} t^{s-1} d t \\
& =\sum_{n_{1}, \cdots, n_{k}=0}^{\infty} \frac{1}{\left(n_{1}+\cdots+n_{k}+x\right)^{s}} \Gamma(s) .
\end{align*}
$$

Therefore, dividing $\Gamma(s)$ on the both side of (2.10), we have the desired result. The proof is complete.

Suppose F is analytic in the annulus $R_{1}<|z|<R_{2}$ for some $R_{1}, R_{2}(>0) \in \mathbb{R}$. Let

$$
\begin{equation*}
H(s)=\oint_{C} F(z) z^{s-1} d z \tag{2.11}
\end{equation*}
$$

where the integral is over the following path C consisting of
i) the horizontal line segment I_{1} from M to $\sqrt{\varepsilon_{2}^{2}-\varepsilon_{1}^{2}}+i \varepsilon_{1}$;
ii) the circular arc $C_{\varepsilon_{1}, \varepsilon_{2}}$ of radius ε_{2} traced counterclockwise from $\sqrt{\varepsilon_{2}^{2}-\varepsilon_{1}^{2}}+i \varepsilon_{1}$ to $\sqrt{\varepsilon_{2}^{2}-\varepsilon_{1}^{2}}-i \varepsilon_{1}$;
iii) the horizontal line segment I_{2} from $\sqrt{\varepsilon_{2}^{2}-\varepsilon_{1}^{2}}-i \varepsilon_{1}$ to M,
where ε_{1} and $\varepsilon_{2}\left(\varepsilon_{1}<\varepsilon_{2}\right)$ are any small numbers and M is arbitrary large. Then $\oint_{C}=\oint_{I_{1}}+\oint_{C_{\varepsilon_{1}, \varepsilon_{2}}}+\oint_{I_{2}}$. Using the contour integral on C, for the special values at non-positive integers $s=1-n(n=1,2, \cdots)$ we have the relations between $\zeta_{k}(1-n, x)$ and $B_{n}^{(k)}(x)$ in the following theorem.

Theorem 2.2. For $k, n \in \mathbb{N}$ and $x>0$, we have

$$
\zeta_{k}(1-n, x)=(-1)^{k} \frac{(n-1)!}{(n+k-1)!} B_{n+k-1}^{(k)}(x)
$$

where $B_{j}^{(k)}(x), j=0,1, \cdots$ are the Bernoulli polynomials with order k.
Proof. Let

$$
F(z)=\left(\frac{1}{1-e^{-z}}\right)^{k} e^{-x z}
$$

Then

$$
H(s)=\left(e^{2 \pi i s}-1\right) \int_{I_{2}} F(t) t^{s-1} d t+\oint_{C_{\varepsilon_{1}, \varepsilon_{2}}} F(z) z^{s-1} d z
$$

Letting $\varepsilon_{2} \rightarrow 0$ and $M \rightarrow \infty$, we have

$$
\oint_{C_{\varepsilon_{1}, \varepsilon_{2}}} F(z) z^{s-1} d z=0
$$

and, from Lemma 2.1, we get

$$
\begin{equation*}
H(s)=\left(e^{2 \pi i s}-1\right) \Gamma(s) \zeta_{k}(s, x) \tag{2.12}
\end{equation*}
$$

Now, for $s=1-n(n \in \mathbb{N})$, letting $\varepsilon_{1} \rightarrow 0$ and taking $\varepsilon_{2}>1$, we have

$$
H(1-n)=\oint_{C_{\varepsilon_{2}}} \frac{F(z)}{z^{n}} d z=\sum_{m=0}^{\infty}(-1)^{m} \frac{B_{m}^{(k)}(x)}{m!} \oint_{C_{\varepsilon_{2}}} \frac{1}{z^{m-(n+k)}} d z
$$

where $C_{\varepsilon_{2}}$ is circle with radius ε_{2} centered at zero. From the Residue theorem, this implies that

$$
\begin{equation*}
H(1-n)=(-1)^{n+k-1} 2 \pi i \frac{B_{n+k-1}^{(k)}(x)}{(n+k-1)!} . \tag{2.13}
\end{equation*}
$$

And also, from (2.4), we can see easily that

$$
\begin{equation*}
\lim _{s \rightarrow 1-n}\left(e^{2 \pi i s}-1\right) \Gamma(s)=\frac{(-1)^{n-1}}{(n-1)!} 2 \pi i . \tag{2.14}
\end{equation*}
$$

Therefore, from (2.12), (2.13) and (2.14), we have the desired result. This is completion of the proof.

The generalized Bernoulli polynomials attached to χ with the conductor τ are defined by

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{n, \chi}(x) \frac{t^{n}}{n!}=\sum_{a=1}^{\tau} \frac{\chi(a) t e^{(a+x) t}}{e^{\tau t}-1} \tag{2.15}
\end{equation*}
$$

In particular, when $x=0, B_{n, \chi}=B_{n, \chi}(0), n=0,1, \cdots$ are the generalized Bernoulli numbers attached to χ. From the definition of $B_{n, \chi}(x)$, we know that

$$
\begin{align*}
\sum_{n=0}^{\infty} B_{n, \chi}(x) \frac{t^{n}}{n!} & =\frac{1}{\tau} \sum_{a=1}^{\tau} \chi(a)\left\{\frac{(\tau t) e^{[(a+x) / \tau] \tau t}}{e^{\tau t}-1}\right\} \tag{2.16}\\
& =\frac{1}{\tau} \sum_{a=1}^{\tau} \chi(a) \sum_{n=0}^{\infty} B_{n}\left(\frac{a+x}{\tau}\right) \frac{\tau^{n} t^{n}}{n!} \\
& =\sum_{n=0}^{\infty}\left\{\tau^{n-1} \sum_{a=1}^{\tau} \chi(n) B_{n}\left(\frac{a+x}{\tau}\right)\right\} \frac{t^{n}}{n!}
\end{align*}
$$

So, comparing the both side of (2.16), we have

$$
\begin{equation*}
B_{n, \chi}(x)=\tau^{n-1} \sum_{a=1}^{\tau} \chi(n) B_{n}\left(\frac{a+x}{\tau}\right) . \tag{2.17}
\end{equation*}
$$

And also, the complex Hurwitz L-function $L(s, x, \chi)=\sum_{n=1}^{\infty} \chi(n)(n+x)^{-s}$ can be expressed in the following lemma.

Lemma 2.3. For $\operatorname{Re}(s)>1$ and $x>0$, we have

$$
L(s, x, \chi)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} \sum_{a=1}^{\tau} \chi(a) \frac{e^{-(a+x) t}}{1-e^{-\tau t}} t^{s-1} d t
$$

where τ is the conductor of the Dirichlet character χ.
Proof. Observe that

$$
\begin{aligned}
\int_{0}^{\infty} \sum_{a=1}^{\tau} \chi(a) \frac{e^{-(a+x) t}}{1-e^{-\tau t}} t^{s-1} d t & =\sum_{a=1}^{\tau} \chi(a) \int_{0}^{\infty} \sum_{m=0}^{\infty} e^{-(a+m \tau+x) t} t^{s-1} d t \\
& =\sum_{a=1}^{\tau} \chi(a) \sum_{m=0}^{\infty} \frac{1}{(a+m \tau+x)^{s}} \int_{0}^{\infty} e^{-y} y^{s-1} d t \\
& =\sum_{a=1}^{\tau} \sum_{m=0}^{\infty} \frac{\chi(a+m \tau)}{(a+m \tau+x)^{s}} \Gamma(s)
\end{aligned}
$$

Since χ is the Dirichlet character with the conductor τ, this implies that

$$
\int_{0}^{\infty} \sum_{a=1}^{\tau} \chi(a) \frac{e^{-(a+x) t}}{1-e^{-\tau t}} t^{s-1} d t=\sum_{n=0}^{\infty} \frac{\chi(n)}{(n+x)^{s}} \Gamma(s)
$$

So the desired result is obtained. The proof is complete.
Theorem 2.4. For $n \in \mathbb{N}$, we have

$$
L(1-n, x, \chi)=-\frac{B_{n, \chi}(x)}{n},
$$

where $B_{n, \chi}(x)$ are the generalized Bernoulli polynomials attached to χ.
Proof. Let

$$
F(z)=\sum_{a=1}^{\tau} \chi(a) \frac{e^{-(a+x) z}}{1-e^{-\tau z}} .
$$

Then

$$
H(s)=\left(e^{2 \pi i s}-1\right) \int_{I_{2}} F(t) t^{s-1} d t+\oint_{C_{\varepsilon_{1}, \varepsilon_{2}}} F(z) z^{s-1} d z,
$$

where I_{1}, I_{2} and $C_{\varepsilon_{1}, \varepsilon_{2}}$ are defined in (2.11). Letting $\varepsilon_{2} \rightarrow 0$ and $M \rightarrow \infty$, we have

$$
\oint_{C_{\varepsilon_{1}, \varepsilon_{2}}} F(z) z^{s-1} d z=0
$$

and, from Lemma 2.3, we get

$$
\begin{equation*}
H(s)=\left(e^{2 \pi i s}-1\right) \Gamma(s) L(s, x, \chi) \tag{2.18}
\end{equation*}
$$

Now, for $s=1-n(n \in \mathbb{N})$, letting $\varepsilon_{1} \rightarrow 0$ and taking $\varepsilon_{2}>1$, we have

$$
H(1-n)=\oint_{C_{\varepsilon_{2}}} \frac{F(z)}{z^{n}} d z=\sum_{m=0}^{\infty}(-1)^{m} \frac{B_{n, \chi}(x)}{m!} \oint_{C_{\varepsilon_{2}}} \frac{1}{z^{n-m+1}} d z,
$$

where $C_{\varepsilon_{2}}$ is circle with radius ε_{2} centered at zero. From the Residue theorem, this implies that

$$
\begin{equation*}
H(1-n)=(-1)^{n} 2 \pi i \frac{B_{n, \chi}(x)}{n!} \tag{2.19}
\end{equation*}
$$

Since

$$
\lim _{s \rightarrow 1-n}\left(e^{2 \pi i s}-1\right) \Gamma(s)=\frac{(-1)^{n-1}}{(n-1)!} 2 \pi i
$$

so, from (2.18) and (2.19), we have the desired result. This is completion of the proof.

The multiple Dirichlet's L-functions are defined by

$$
\begin{equation*}
L_{k}(s, x)=\sum_{n_{1}, \cdots, n_{k}=0}^{\infty} \frac{\prod_{j=1}^{k} \chi\left(n_{j}\right)}{\left(n_{1}+\cdots+n_{k}+x\right)^{s}}, \tag{2.20}
\end{equation*}
$$

where τ is the conductor of the Dirichlet character χ.
Lemma 2.5. For $k \in \mathbb{N}$ and $\operatorname{Re}(s)>1$, we have

$$
L_{k}(s, \chi)=\frac{1}{\Gamma(s)} \int_{0}^{\infty}\left(\sum_{a=1}^{\tau} \chi(a) \frac{e^{-a t}}{1-e^{-\tau t}}\right)^{k} t^{s-1} d t
$$

where τ is the conductor of the Dirichlet character χ.
Proof. Observe that

$$
\begin{aligned}
& \int_{0}^{\infty}\left(\sum_{a=1}^{\tau} \chi(a) \frac{e^{-a t}}{1-e^{-\tau t}}\right)^{k} t^{s-1} d t \\
= & \sum_{a_{1}, \cdots, a_{k}=1}^{\tau} \prod_{j=1}^{k} \chi\left(a_{j}\right) \sum_{m_{1}, \cdots, m_{k}=0}^{\infty} \int_{0}^{\infty} e^{-\left(m_{1} \tau+\cdots+m_{k} \tau\right) t} t^{s-1} d t \\
= & \sum_{a_{1}, \cdots, a_{k}=1}^{\infty} \sum_{m_{1}, \cdots, m_{k}=1}^{\infty} \frac{\chi\left(a_{1}+m_{1} \tau\right) \cdots \chi\left(a_{1}+m_{1} \tau\right)}{\left(m_{1} \tau+a_{1}+\cdots+m_{k} \tau+a_{k}\right)^{s}} \Gamma(s) .
\end{aligned}
$$

Since χ is the Dirichlet character with the conductor τ, this implies that

$$
\int_{0}^{\infty}\left(\sum_{a=1}^{\tau} \chi(a) \frac{e^{-a t}}{1-e^{-\tau t}}\right)^{k} t^{s-1} d t=\Gamma(s) \sum_{n_{1}, \cdots, n_{k}=1}^{\infty} \prod_{j=1}^{\tau} \frac{\chi\left(a_{j}\right)}{\left(n_{1}+\cdots+n_{k}+x\right)^{s}}
$$

So the desired result is obtained. The proof is complete.
The generalized Bernoulli numbers attached to χ with order $k, B_{n, \chi}^{(k)}, n=$ $0,1, \cdots$, are defined by

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{n, \chi}^{(k)} \frac{t^{n}}{n!}=\left(\sum_{a=1}^{\tau} \chi(a) \frac{t e^{a t}}{e^{\tau t}-1}\right)^{k} \tag{2.21}
\end{equation*}
$$

where τ is the conductor of the Dirichlet character χ. Observe that

$$
\begin{align*}
\left(\sum_{a=1}^{\tau} \chi(a) \frac{t e^{a t}}{e^{\tau t}-1}\right)^{k} & =\sum_{a_{1}, \cdots, a_{k}=1}^{\tau} \prod_{j=1}^{k} \chi\left(a_{j}\right)\left(\frac{t}{e^{\tau t}-1}\right)^{k} e^{\left(a_{1}+\cdots+a_{k}\right) t} \tag{2.22}\\
& =\frac{1}{\tau^{k}} \sum_{a_{1}, \cdots, a_{k}=1}^{\tau} \prod_{j=1}^{k} \chi\left(a_{j}\right) \sum_{n=0}^{\infty} B_{n}^{(k)}\left(\frac{a_{1}+\cdots+a_{k}}{\tau}\right) \tau^{n} \frac{t^{n}}{n!} \\
& =\sum_{n=0}^{\infty}\left\{\tau^{n-k} \sum_{a_{1}, \cdots, a_{k}=1}^{\tau} \prod_{j=1}^{k} \chi\left(a_{j}\right) B_{n}^{(k)}\left(\frac{a_{1}+\cdots+a_{k}}{\tau}\right)\right\} \frac{t^{n}}{n!} .
\end{align*}
$$

Therefore, we get the functional equation

$$
\begin{equation*}
B_{n, \chi}^{(k)}=\tau^{n-k} \sum_{a_{1}, \cdots, a_{k}=1}^{\tau} \prod_{j=1}^{k} \chi\left(a_{j}\right) B_{n}^{(k)}\left(\frac{a_{1}+\cdots+a_{k}}{\tau}\right) \tag{2.23}
\end{equation*}
$$

where $B_{n}^{(k)}(x), n=0,1, \cdots$ are the Bernoulli polynomials with order k. From Lemma 2.5, we have the following Theorem.

Theorem 2.6. For $n \in \mathbb{N}$, we have

$$
L_{k}(1-n, \chi)=(-1)^{k} \frac{(n-1)!}{(n+k-1)!} B_{n+k-1, \chi}^{(k)}
$$

where $B_{j, \chi}^{(k)}, j=0,1, \cdots$ are the generalized Bernoulli numbers with order k attached to χ.
Proof. Let

$$
F(z)=\left(\sum_{a=1}^{\tau} \chi(a) \frac{t e^{a t}}{e^{\tau t}-1}\right)^{k}
$$

Then

$$
H(s)=\left(e^{2 \pi i s}-1\right) \int_{I_{2}} F(t) t^{s-1} d t+\oint_{C_{\varepsilon_{1}, \varepsilon_{2}}} F(z) z^{s-1} d z
$$

where I_{1}, I_{2} and $C_{\varepsilon_{1}, \varepsilon_{2}}$ are defined in (2.11). Letting $\varepsilon_{2} \rightarrow 0$ and $M \rightarrow \infty$, we have

$$
\oint_{C_{\varepsilon_{1}, \varepsilon_{2}}} F(z) z^{s-1} d z=0
$$

and, from Lemma 2.5, we get

$$
\begin{equation*}
H(s)=\left(e^{2 \pi i s}-1\right) \Gamma(s) L_{k}(1-n, \chi) \tag{2.24}
\end{equation*}
$$

Now, for $s=1-n(n \in \mathbb{N})$, letting $\varepsilon_{1} \rightarrow 0$ and taking ε_{2}, we have

$$
H(1-n)=\oint_{C_{\varepsilon_{2}}} \frac{F(z)}{z^{n}} d z=\sum_{m=0}^{\infty}(-1)^{m} \frac{B_{m, \chi}^{(r)}}{m!} \oint_{C_{\varepsilon_{2}}} \frac{1}{z^{n+k-m}} d z
$$

where $C_{\varepsilon_{2}}$ is circle with radius ε_{2} centered at zero. From the Residue theorem, this implies that

$$
\begin{equation*}
H(1-n)=(-1)^{n+k-1} 2 \pi i \frac{B_{n+k-1}^{(k)}}{(n+k-1)!} . \tag{2.25}
\end{equation*}
$$

Since

$$
\lim _{s \rightarrow 1-n}\left(e^{2 \pi i s}-1\right) \Gamma(s)=\frac{(-1)^{n-1}}{(n-1)!} 2 \pi i
$$

so, from (2.24) and (2.25), we have the desired result. This is completion of the proof.

References

[1] L. V. Ahlfors, Complex Analysis, 3rd Edition, McGraw-Hill, 1979.
[2] A. Bayad, Modular properties of elliptic Bernoulli and Euler functions, Adv. Stud. Contemp. Math., 20(3)(2010), 389-401.
[3] A. Bayad and T. Kim, Identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials, Adv. Stud. Contemp. Math., 20(2)(2010), 247-253.
[4] J. Choi, D. S. Kim, T. Kim, and Y. H. Kim, Some arithmetic identities on Bernoulli and Euler numbers arising from the p-adic integrals on \mathbb{Z}_{p}, Adv. Stud. Contemp. Math., 22(2)(2012), 239-247.
[5] R. J. Dwilewicz and J. Minac, Values of the Riemann zeta function at integers, Materials Matematics 2009, no. 6, 1-26.
[6] K. W. Hwang, D. V. Dolgy, D. S. Kim, T. Kim, and S. H. Lee, Some theorems on Bernoulli and Euler numbers, Ars Combin., 109(2013), 285-297.
[7] L. C. Jang and H. K. Pak, Non-Archimedean integration associated with q-Bernoulli numbers, Proc. Jangjeon math. Soc., 5(2)(2002), 125-129.
[8] D. Kang, J. Jeong, S. J. Lee, and S. H. Rim, A note on the Bernoulli polynomials arising from a non-linear differential equation, Proc. Jangjeon math. Soc., 16(1)(2013), 37-43.
[9] T. Kim, J. Choi and Y. H. Kim, A note on the values of Euler zeta functions at positive integers, Adv. Stud. Contemp. Math., 22(1)(2012), 27-34.
[10] T. Kim, D. S. Kim, A. Bayad, and S. H. Rim, Identities on the Bernoulli and the Euler numbers and polynomials, Ars Combin., 107(2012), 455-463.
[11] G. Kim, B. Kim and J. Choi, The DC algorithm for computing sums of powers of consecutive integers and Bernoulli numbers, Adv. Stud. Contemp. Math., 17(2)(2008), 137-145.
[12] A. Kudo, A congruence of generalized Bernoulli number for the character of the first kind, Adv. Stud. Contemp. Math., 2 (2000), 1-8.
[13] B. Kurt, Some identities on the second kind Bernoulli polynomials of order α and second kind Euler polynomials of order α with the parameters a, b, c, Proc. Jangjeon Math. Soc., 16(2)(2013), 245-249.
[14] Q. M. Luo, Some recursion formulae and relations for Bernoulli numbers and Euler numbers of higher order, Adv. Stud. Contemp. Math., 10(1)(2005), 63-70.
[15] Q. M. Luo and F. Qi, Relationships between generalized Bernoulli numbers and polynomials and generalized Euler numbers and polynomials, Adv. Stud. Contemp. Math., 7(1)(2003), 11-18.
[16] H. Ozden, I. N. Cangul and Y. Simsek, Remarks on q-Bernoulli numbers associated with Daehee numbers, Adv. Stud. Contemp. Math., 18(1)(2009), 41-48.
[17] J. W. Park, S. H. Rim, J. Seo, and J. Kwon, A note on the modified q-Bernoulli polynomials, Proc. Jangjeon math. Soc., 16(4)(2013), 451-456.
[18] Y. Simsek, Theorems on twisted L-function and twisted Bernoulli numbers, Adv. Stud. Contemp. Math., 11(2)(2005), 205-218.
[19] H. M. Srivastava, T. Kim and Y. Simsek, q-Bernoulli numbers and polynomials associated with multiple q-zeta functions and basic L-series, Russ. J. Math. Phys., 12(2)(2005), 241-268.
[20] L. C. Washington, Introduction to cyclotomic fields, Springer-Verlag, New York, 1997.
[21] Z. Zhang and H. Yang, Some closed formulas for generalized Bernoulli-Euler numbers and polynomials, Proc. Jangjeon Math. Soc., 11(2)(2008), 191-198.

[^0]: * Corresponding Author.

 Received April 22, 2014; accepted December 11, 2014. 2010 Mathematics Subject Classification: 11B68, 11S80.
 Key words and phrases: Euler zeta function, Dirichlet L-series, Hurwitz L-function, Generalized Bernoulli numbers and polynomials attached to χ.

