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Abstract. In this paper, we investigate the functional equations of the multiple Dirichlet

and Hurwitz L-functions associated with Bernoulli numbers and polynomials attached to

Dirichlet character.

1. Introduction

Euler’s zeta function is defined for any real number s greater than 1 by the
infinite sum:

(1.1) ζ(s) =

∞∑
n=1

1

ns
.

It connects by a continuous parameter all series from (1.1). In 1734 Leonhard
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Euler (1707-1783) found something amazing; namely he determined all values ζ(2n),
n ∈ N, a truly remarkable discovery.Ref. [5], [9] He also found a beautiful relationship
between prime numbers and ζ(s) whose significance for current mathematics cannot
be overestimated.Ref. [1], [5] This can be written more concisely as an infinite product
over all primes p:

(1.2) ζ(s) =
∏

p : prime

1

1− p−s
, s > 1.

Many authors have studied various functions in connection with the Euler’s zeta
function under various hypotheses.Ref. [7], [11]-[14], [16], [17] Bernhard Riemann (1826-
1866) extended the ζ(s) as a function of a complex variable s = x+ iy rather than a
real variable s by meromorphic function.Ref. [5] In the half plane Re(s)> 1 the zeta
function is given explicitly by series (1.1), and it is therefore subject to the estimate
|ζ(s)| ≤ ζ(Re(s)). Riemann recognized that there is a rather simple relationship
between ζ(s) and ζ(1− s) as following;

(1.3) ζ(s) = 2sπs−1 sin
πs

2
Γ(1− s)ζ(1− s),

where Γ(s) =
´∞
0

e−tts−1dt is the gamma function of s. it has good control of the

behavior of the zeta function also in the half plane Re(s)< 0.Ref. [2], [20]

In number theory, Dirichlet characters are certain arithmetic functions which
arise from completely multiplicative characters on the units of Z/kZ. A Dirichlet
character is any function χ from the integers Z to the complex numbers C such that
χ has the following properties:
( i ) There exists a positive integer τ such that χ(n) = χ(n+ τ) for all n.
( ii ) If gcd(n, τ) > 1 then χ(n) = 0; if gcd(n, τ) = 1 then χ(n) ̸= 0.
(iii) χ(mn) = χ(m)χ(n) for all integers m and n.

The unique character of period 1 is called the trivial character and the smallest
positive integer τ in ( i ) and ( ii ) is called the conductor of χ. Dirichlet characters
are used to define Dirichlet L-functions, which are meromorphic functions with a
variety of interesting analytic properties. If χ is a Dirichlet character, The L-series
attached to χ is defined by

(1.4) L(s, χ) =
∞∑

n=1

χ(n)

ns
, Re(s) > 1.

This function can be extended to a meromorphic function on the whole complex
plane and are generalizations of the Riemann zeta-function. This can be expressed
by the partial zeta functions as follows;Ref. [18], [19]

(1.5) L(s, χ) =
τ∑

a=1

χ(a)τ−sζ
(
s,

a

τ

)
,
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where ζ(s, x) are Hurwitz zeta function defined by

(1.6) ζ(s, x) =
∞∑

n=1

1

(n+ x)s
, Re(s) > 1, x > 0.

The generalized Bernoulli numbers attached to χ, Bn,χ, n = 0, 1, · · · , are defined by
the exponential generating function to be

(1.7)
∞∑

n=0

Bn,χ
tn

n!
=

τ∑
a=1

χ(a)teat

eτt − 1
, |t| < 2π

τ
.

There is a relation between Bn,χ and Bn(x) as following;

(1.8) Bn,χ = τn−1
τ∑

a=1

χ(a)Bn

(a
τ

)
,

where Bn(x), n = 0, 1, · · · are Bernoulli polynomials defined by

(1.9)
∞∑

n=0

Bn
tn

n!
=

t

et − 1
ext, |t| < 2π. Ref. [3], [6], [8], [15]

For the special values at non-positive integers s = 1− n (n = 1, 2, · · · ), L(s, χ) can
be expressed by the generalized Bernoulli numbers Bn,χ as following;

(1.10) L(1− n, χ) = −Bn,χ

n
.

This was found by many authors including Washington.Ref. [4], [10], [20], [21] In this
paper, we investigate the functional equations of the multiple Dirichlet and Hur-
witz L-functions associated with Bernoulli numbers and polynomials attached to
Dirichlet character.

2. Functional Equations

For any natural number k ∈ N, the high-order Bernoulli polynomials with order

k, B
(k)
n (x), n = 0, 1, · · · , are defined by the exponential generating functions to be

(2.1)
∞∑

n=0

B(k)
n (x)

tn

n!
=

(
t

et − 1

)k

ext.

When x = 0, the numbers B
(k)
n = B

(k)
n (0), n = 1, 2, · · · are called the higher-order

Bernoulli numbers with order k. In complex plane C, the gamma function is defined
as an improper integral for Re(s)> 0

(2.2) Γ(s) =

ˆ ∞

0

ts−1e−tdt.
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Replacing s by 1− s, we know that for Re(s)< 1

(2.3) Γ(1− s) =

ˆ ∞

0

e−t

ts
dt.

For s = n ∈ N in (2.3), since the complex function e−z/zn has a pole of order n at
0, from the Cauchy Residue Theorem, we know that the contour integral is

(2.4)

‰
C0

e−z

zn
dz = 2πi lim

z→0

1

(n− 1)!

dn−1

dzn−1
[znf(z)] =

(−1)n−1

(n− 1)!
2πi,

where C0 is any circle centered at 0 and i =
√
−1. Observe that for any complex s

with Re(s)> 1

(2.5)

ˆ ∞

0

t

et − 1
ts−1dt =

∞∑
m=0

1

(m+ 1)s

ˆ ∞

0

e−yys−1dy.

So we have

(2.6) ζ(s) =
1

Γ(s)

ˆ ∞

0

1

et − 1
ts−2dt.

Consider the Generalized Hurwitz zeta functions, the multiple Hurwitz zeta func-
tions with order k are defined by

(2.7) ζk(s, x) =
∞∑

n1,··· ,nk=0

1

(n1 + · · ·+ nk + x)s

for Re(s)> 1 and x > 0. Observe that

ζk(s, x) =
1

Γ(s)

∞∑
n=0

(
n+ k − 1

n

)ˆ ∞

0

e−(n+x)tts−1dt

=
1

Γ(s)

∞∑
n=0

(
n+ k − 1

n

)
1

(n+ x)s

ˆ ∞

0

e−yys−1dy.

(2.8)

Then the generalized Hurwitz zeta function can be expressed as follows;

(2.9) ζk(s, x) =
∞∑

n=0

(
n+ k − 1

n

)
1

(n+ x)s
.

Lemma 2.1. For k ∈ N, we have

ζk(s, x) =
1

Γ(s)

ˆ ∞

0

(
1

1− e−t

)k

e−xtts−1dt,
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where Re(s)> 1 and x > 0.

Proof. Since

et

et − 1
= 1 +

1

et
+

1

e2t
+ · · · =

∞∑
n=0

(
1

et

)n

,

thus we have

1

Γ(s)

ˆ ∞

0

(
t

1− e−t

)k

e−xtts−k−1dt =

ˆ ∞

0

( ∞∑
n1=0

e−n1t · · ·
∞∑

nk=0

e−nkt

)
e−xtts−1dt

=

∞∑
n1,··· ,nk=0

ˆ ∞

0

e−(n1+···+nk+x)tts−1dt

=
∞∑

n1,··· ,nk=0

1

(n1 + · · ·+ nk + x)s
Γ(s).

(2.10)

Therefore, dividing Γ(s) on the both side of (2.10), we have the desired result. The
proof is complete. 2

Suppose F is analytic in the annulus R1 < |z| < R2 for some R1, R2(> 0) ∈ R.
Let

(2.11) H(s) =

‰
C

F (z)zs−1dz,

where the integral is over the following path C consisting of
i ) the horizontal line segment I1 from M to

√
ε22 − ε21 + iε1;

ii ) the circular arc Cε1,ε2 of radius ε2 traced counterclockwise from
√
ε22 − ε21 + iε1

to
√
ε22 − ε21 − iε1;

iii) the horizontal line segment I2 from
√

ε22 − ε21 − iε1 to M ,
where ε1 and ε2 (ε1 < ε2) are any small numbers and M is arbitrary large. Then
C

=


I1
+


Cε1,ε2
+


I2
. Using the contour integral on C, for the special values

at non-positive integers s = 1 − n (n = 1, 2, · · · ) we have the relations between

ζk(1− n, x) and B
(k)
n (x) in the following theorem.

Theorem 2.2. For k, n ∈ N and x > 0, we have

ζk(1− n, x) = (−1)k
(n− 1)!

(n+ k − 1)!
B

(k)
n+k−1(x),

where B
(k)
j (x), j = 0, 1, · · · are the Bernoulli polynomials with order k.

Proof. Let

F (z) =

(
1

1− e−z

)k

e−xz.
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Then

H(s) =
(
e2πis − 1

)ˆ
I2

F (t)ts−1dt+

‰
Cε1,ε2

F (z)zs−1dz.

Letting ε2 → 0 and M → ∞, we have‰
Cε1,ε2

F (z)zs−1dz = 0

and, from Lemma 2.1, we get

H(s) =
(
e2πis − 1

)
Γ(s)ζk(s, x).(2.12)

Now, for s = 1− n (n ∈ N), letting ε1 → 0 and taking ε2 > 1, we have

H(1− n) =

‰
Cε2

F (z)

zn
dz =

∞∑
m=0

(−1)m
B

(k)
m (x)

m!

‰
Cε2

1

zm−(n+k)
dz,

where Cε2 is circle with radius ε2 centered at zero. From the Residue theorem, this
implies that

H(1− n) = (−1)n+k−12πi
B

(k)
n+k−1(x)

(n+ k − 1)!
.(2.13)

And also, from (2.4), we can see easily that

(2.14) lim
s→1−n

(
e2πis − 1

)
Γ(s) =

(−1)n−1

(n− 1)!
2πi.

Therefore, from (2.12), (2.13) and (2.14), we have the desired result. This is com-
pletion of the proof. 2

The generalized Bernoulli polynomials attached to χ with the conductor τ are
defined by

(2.15)

∞∑
n=0

Bn,χ(x)
tn

n!
=

τ∑
a=1

χ(a)te(a+x)t

eτt − 1
.

In particular, when x = 0, Bn,χ = Bn,χ(0), n = 0, 1, · · · are the generalized Bernoulli
numbers attached to χ. From the definition of Bn,χ(x), we know that

∞∑
n=0

Bn,χ(x)
tn

n!
=
1

τ

τ∑
a=1

χ(a)

{
(τt)e[(a+x)/τ ]τt

eτt − 1

}

=
1

τ

τ∑
a=1

χ(a)
∞∑

n=0

Bn

(
a+ x

τ

)
τntn

n!

=
∞∑

n=0

{
τn−1

τ∑
a=1

χ(n)Bn

(
a+ x

τ

)}
tn

n!
.

(2.16)
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So, comparing the both side of (2.16), we have

(2.17) Bn,χ(x) = τn−1
τ∑

a=1

χ(n)Bn

(
a+ x

τ

)
.

And also, the complex Hurwitz L-function L(s, x, χ) =
∑∞

n=1 χ(n)(n+ x)−s can be
expressed in the following lemma.

Lemma 2.3. For Re(s)> 1 and x > 0, we have

L(s, x, χ) =
1

Γ(s)

ˆ ∞

0

τ∑
a=1

χ(a)
e−(a+x)t

1− e−τt
ts−1dt,

where τ is the conductor of the Dirichlet character χ.

Proof. Observe that

ˆ ∞

0

τ∑
a=1

χ(a)
e−(a+x)t

1− e−τt
ts−1dt =

τ∑
a=1

χ(a)

ˆ ∞

0

∞∑
m=0

e−(a+mτ+x)tts−1dt

=
τ∑

a=1

χ(a)
∞∑

m=0

1

(a+mτ + x)s

ˆ ∞

0

e−yys−1dt

=
τ∑

a=1

∞∑
m=0

χ(a+mτ)

(a+mτ + x)s
Γ(s).

Since χ is the Dirichlet character with the conductor τ , this implies that

ˆ ∞

0

τ∑
a=1

χ(a)
e−(a+x)t

1− e−τt
ts−1dt =

∞∑
n=0

χ(n)

(n+ x)s
Γ(s).

So the desired result is obtained. The proof is complete. 2

Theorem 2.4. For n ∈ N, we have

L(1− n, x, χ) = −Bn,χ(x)

n
,

where Bn,χ(x) are the generalized Bernoulli polynomials attached to χ.

Proof. Let

F (z) =
τ∑

a=1

χ(a)
e−(a+x)z

1− e−τz
.

Then

H(s) =
(
e2πis − 1

) ˆ
I2

F (t)ts−1dt+

‰
Cε1,ε2

F (z)zs−1dz,
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where I1, I2 and Cε1,ε2 are defined in (2.11). Letting ε2 → 0 and M → ∞, we have‰
Cε1,ε2

F (z)zs−1dz = 0

and, from Lemma 2.3, we get

H(s) =
(
e2πis − 1

)
Γ(s)L(s, x, χ).(2.18)

Now, for s = 1− n (n ∈ N), letting ε1 → 0 and taking ε2 > 1, we have

H(1− n) =

‰
Cε2

F (z)

zn
dz =

∞∑
m=0

(−1)m
Bn,χ(x)

m!

‰
Cε2

1

zn−m+1
dz,

where Cε2 is circle with radius ε2 centered at zero. From the Residue theorem, this
implies that

H(1− n) = (−1)n2πi
Bn,χ(x)

n!
.(2.19)

Since

lim
s→1−n

(
e2πis − 1

)
Γ(s) =

(−1)n−1

(n− 1)!
2πi,

so, from (2.18) and (2.19), we have the desired result. This is completion of the
proof. 2

The multiple Dirichlet’s L-functions are defined by

(2.20) Lk(s, x) =
∞∑

n1,··· ,nk=0

∏k
j=1 χ(nj)

(n1 + · · ·+ nk + x)s
,

where τ is the conductor of the Dirichlet character χ.

Lemma 2.5. For k ∈ N and Re(s)> 1, we have

Lk(s, χ) =
1

Γ(s)

ˆ ∞

0

(
τ∑

a=1

χ(a)
e−at

1− e−τt

)k

ts−1dt,

where τ is the conductor of the Dirichlet character χ.

Proof. Observe that

ˆ ∞

0

(
τ∑

a=1

χ(a)
e−at

1− e−τt

)k

ts−1dt

=
τ∑

a1,··· ,ak=1

k∏
j=1

χ(aj)
∞∑

m1,··· ,mk=0

ˆ ∞

0

e−(m1τ+···+mkτ)tts−1dt

=

∞∑
a1,··· ,ak=1

∞∑
m1,··· ,mk=1

χ(a1 +m1τ) · · ·χ(a1 +m1τ)

(m1τ + a1 + · · ·+mkτ + ak)s
Γ(s).
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Since χ is the Dirichlet character with the conductor τ , this implies that

ˆ ∞

0

(
τ∑

a=1

χ(a)
e−at

1− e−τt

)k

ts−1dt = Γ(s)
∞∑

n1,··· ,nk=1

τ∏
j=1

χ(aj)

(n1 + · · ·+ nk + x)s
.

So the desired result is obtained. The proof is complete. 2

The generalized Bernoulli numbers attached to χ with order k, B
(k)
n,χ, n =

0, 1, · · · , are defined by

(2.21)
∞∑

n=0

B(k)
n,χ

tn

n!
=

(
τ∑

a=1

χ(a)
teat

eτt − 1

)k

,

where τ is the conductor of the Dirichlet character χ. Observe that

(
τ∑

a=1

χ(a)
teat

eτt − 1

)k

=
τ∑

a1,··· ,ak=1

k∏
j=1

χ(aj)

(
t

eτt − 1

)k

e(a1+···+ak)t

=
1

τk

τ∑
a1,··· ,ak=1

k∏
j=1

χ(aj)
∞∑

n=0

B(k)
n

(
a1 + · · ·+ ak

τ

)
τn

tn

n!

=
∞∑

n=0

τn−k
τ∑

a1,··· ,ak=1

k∏
j=1

χ(aj)B
(k)
n

(
a1 + · · ·+ ak

τ

) tn

n!
.

(2.22)

Therefore, we get the functional equation

(2.23) B(k)
n,χ = τn−k

τ∑
a1,··· ,ak=1

k∏
j=1

χ(aj)B
(k)
n

(
a1 + · · ·+ ak

τ

)
,

where B
(k)
n (x), n = 0, 1, · · · are the Bernoulli polynomials with order k. From

Lemma 2.5, we have the following Theorem.

Theorem 2.6. For n ∈ N, we have

Lk(1− n, χ) = (−1)k
(n− 1)!

(n+ k − 1)!
B

(k)
n+k−1,χ,

where B
(k)
j,χ , j = 0, 1, · · · are the generalized Bernoulli numbers with order k attached

to χ.

Proof. Let

F (z) =

(
τ∑

a=1

χ(a)
teat

eτt − 1

)k

.
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Then

H(s) =
(
e2πis − 1

)ˆ
I2

F (t)ts−1dt+

‰
Cε1,ε2

F (z)zs−1dz,

where I1, I2 and Cε1,ε2 are defined in (2.11). Letting ε2 → 0 and M → ∞, we have

‰
Cε1,ε2

F (z)zs−1dz = 0

and, from Lemma 2.5, we get

H(s) =
(
e2πis − 1

)
Γ(s)Lk(1− n, χ).(2.24)

Now, for s = 1− n (n ∈ N), letting ε1 → 0 and taking ε2, we have

H(1− n) =

‰
Cε2

F (z)

zn
dz =

∞∑
m=0

(−1)m
B

(r)
m,χ

m!

‰
Cε2

1

zn+k−m
dz,

where Cε2 is circle with radius ε2 centered at zero. From the Residue theorem, this
implies that

H(1− n) = (−1)n+k−12πi
B

(k)
n+k−1

(n+ k − 1)!
.(2.25)

Since

lim
s→1−n

(
e2πis − 1

)
Γ(s) =

(−1)n−1

(n− 1)!
2πi,

so, from (2.24) and (2.25), we have the desired result. This is completion of the
proof. 2
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