• Title/Summary/Keyword: Euler polynomials and numbers

Search Result 61, Processing Time 0.027 seconds

A NOTE ON MIXED POLYNOMIALS AND NUMBERS

  • Mohd Ghayasuddin;Nabiullah Khan
    • Honam Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.168-180
    • /
    • 2024
  • The main object of this article is to propose a unified extension of Bernoulli, Euler and Genocchi polynomials by means of a new family of mixed polynomials whose generating function is given in terms of generalized Bessel function. We also discuss here some fundamental properties of our introduced mixed polynomials by making use of the series arrangement technique. Furthermore, some conclusions of our present study are also pointed out in the last section.

ON POLY-EULERIAN NUMBERS

  • Son, Jin-Woo;Kim, Min-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.47-61
    • /
    • 1999
  • In this paper we difine poly-Euler numbers which generalize ordinary Euler numbers. We construct a p-adic poly-Euler measure by the poly-Euler polynomials and derive an integral formula.

  • PDF

UNIFIED APOSTOL-KOROBOV TYPE POLYNOMIALS AND RELATED POLYNOMIALS

  • Kurt, Burak
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.315-326
    • /
    • 2021
  • Korobov type polynomials are introduced and extensively investigated many mathematicians ([1, 8-10, 12-14]). In this work, we define unified Apostol Korobov type polynomials and give some recurrences relations for these polynomials. Further, we consider the q-poly Korobov polynomials and the q-poly-Korobov type Changhee polynomials. We give some explicit relations and identities above mentioned functions.

ON THE SYMMETRY PROPERTIES OF THE GENERALIZED HIGHER-ORDER EULER POLYNOMIALS

  • Bayad, Abdelmejid;Kim, Tae-Kyun;Choi, Jong-Sung;Kim, Young-Hee;Lee, Byung-Je
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.511-516
    • /
    • 2011
  • In this paper we prove a generalized symmetry relation between the generalized Euler polynomials and the generalized higher-order (attached to Dirichlet character) Euler polynomials. Indeed, we prove a relation between the power sum polynomials and the generalized higher-order Euler polynomials..

A NUMERICAL INVESTIGATION ON THE ZEROS OF THE TANGENT POLYNOMIALS

  • Ryoo, C.S.
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.3_4
    • /
    • pp.315-322
    • /
    • 2014
  • In this paper, we observe the behavior of complex roots of the tangent polynomials $T_n(x)$, using numerical investigation. By means of numerical experiments, we demonstrate a remarkably regular structure of the complex roots of the tangent polynomials $T_n(x)$. Finally, we give a table for the solutions of the tangent polynomials $T_n(x)$.

q-ADDITION THEOREMS FOR THE q-APPELL POLYNOMIALS AND THE ASSOCIATED CLASSES OF q-POLYNOMIALS EXPANSIONS

  • Sadjang, Patrick Njionou
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1179-1192
    • /
    • 2018
  • Several addition formulas for a general class of q-Appell sequences are proved. The q-addition formulas, which are derived, involved not only the generalized q-Bernoulli, the generalized q-Euler and the generalized q-Genocchi polynomials, but also the q-Stirling numbers of the second kind and several general families of hypergeometric polynomials. Some q-umbral calculus generalizations of the addition formulas are also investigated.