• Title/Summary/Keyword: Euler Number

Search Result 223, Processing Time 0.031 seconds

AN EXTENSION OF GENERALIZED EULER POLYNOMIALS OF THE SECOND KIND

  • Kim, Y.H.;Jung, H.Y.;Ryoo, C.S.
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.3_4
    • /
    • pp.465-474
    • /
    • 2014
  • Many mathematicians have studied various relations beween Euler number $E_n$, Bernoulli number $B_n$ and Genocchi number $G_n$ (see [1-18]). They have found numerous important applications in number theory. Howard, T.Agoh, S.-H.Rim have studied Genocchi numbers, Bernoulli numbers, Euler numbers and polynomials of these numbers [1,5,9,15]. T.Kim, M.Cenkci, C.S.Ryoo, L. Jang have studied the q-extension of Euler and Genocchi numbers and polynomials [6,8,10,11,14,17]. In this paper, our aim is introducing and investigating an extension term of generalized Euler polynomials. We also obtain some identities and relations involving the Euler numbers and the Euler polynomials, the Genocchi numbers and Genocchi polynomials.

ON POLY-EULERIAN NUMBERS

  • Son, Jin-Woo;Kim, Min-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.47-61
    • /
    • 1999
  • In this paper we difine poly-Euler numbers which generalize ordinary Euler numbers. We construct a p-adic poly-Euler measure by the poly-Euler polynomials and derive an integral formula.

  • PDF

Effects of Characteristic Condition Number on Convergence in Calculating Low Mach Number Flows, I : Euler Equations (저속 유동 계산의 수렴성에 미치는 특성 조건수의 영향 I : 오일러 방정식)

  • Lee, Sang-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.115-122
    • /
    • 2008
  • The effects of characteristic condition number on the convergence of preconditioned Euler equations were investigated. The two-dimensional preconditioned Euler equations adopting Choi and Merkle's preconditioning and the temperature preconditioning are considered. Preconditioned Roe's FDS scheme was adopted for spatial discretization and preconditioned LU-SGS scheme was used for time integration. It is shown that the convergence characteristics of the Euler equations are strongly affected by the characteristic condition number, and there is an optimal characteristic condition number for a problem. The optimal characteristic condition numbers for the Choi and Merkle's preconditioning and temperature preconditioning are different.

A NOTE ON THE TWISTED LERCH TYPE EULER ZETA FUNCTIONS

  • He, Yuan;Zhang, Wenpeng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.659-665
    • /
    • 2013
  • In this note, the $q$-extension of the twisted Lerch Euler zeta functions considered by Jang [Bull. Korean Math. Soc. 47 (2010), no. 6, 1181-1188] is further investigated, and the generalized multiplication theorem for the $q$-extension of the twisted Lerch Euler zeta functions is given. As applications, some well-known results in the references are deduced as special cases.

Bernoulli and Euler Polynomials in Two Variables

  • Claudio Pita-Ruiz
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.1
    • /
    • pp.133-159
    • /
    • 2024
  • In a previous work we studied generalized Stirling numbers of the second kind S(a2,b2,p2)a1,b1 (p1, k), where a1, a2, b1, b2 are given complex numbers, a1, a2 ≠ 0, and p1, p2 are non-negative integers given. In this work we use these generalized Stirling numbers to define Bernoulli polynomials in two variables Bp1,p2 (x1, x2), and Euler polynomials in two variables Ep1p2 (x1, x2). By using results for S(1,x2,p2)1,x1 (p1, k), we obtain generalizations, to the bivariate case, of some well-known properties from the standard case, as addition formulas, difference equations and sums of powers. We obtain some identities for bivariate Bernoulli and Euler polynomials, and some generalizations, to the bivariate case, of several known identities for Bernoulli and Euler numbers and polynomials of the standard case.

THE q-ANALOGUE OF TWISTED LERCH TYPE EULER ZETA FUNCTIONS

  • Jang, Lee-Chae
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1181-1188
    • /
    • 2010
  • q-Volkenborn integrals ([8]) and fermionic invariant q-integrals ([12]) are introduced by T. Kim. By using these integrals, Euler q-zeta functions are introduced by T. Kim ([18]). Then, by using the Euler q-zeta functions, S.-H. Rim, S. J. Lee, E. J. Moon, and J. H. Jin ([25]) studied q-Genocchi zeta functions. And also Y. H. Kim, W. Kim, and C. S. Ryoo ([7]) investigated twisted q-zeta functions and their applications. In this paper, we consider the q-analogue of twisted Lerch type Euler zeta functions defined by $${\varsigma}E,q,\varepsilon(s)=[2]q \sum\limits_{n=0}^\infty\frac{(-1)^n\epsilon^nq^{sn}}{[n]_q}$$ where 0 < q < 1, $\mathfrak{R}$(s) > 1, $\varepsilon{\in}T_p$, which are compared with Euler q-zeta functions in the reference ([18]). Furthermore, we give the q-extensions of the above twisted Lerch type Euler zeta functions at negative integers which interpolate twisted q-Euler polynomials.

SOME PROPERTIES OF DEGENERATED EULER POLYNOMIALS OF THE SECOND KIND USING DEGENERATED ALTERNATIVE POWER SUM

  • KANG, JUNG YOOG
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.5_6
    • /
    • pp.599-609
    • /
    • 2017
  • We construct degenerated Euler polynomials of the second kind and find some basic properties of this polynomials. From this paper, we can see degenerated alternative power sum is defined and is related to degenerated Euler polynomials of the second kind. Using this power sum, we have a number of symmetric properties of degenerated Euler polynomials of the second kind.

DEGENERATE POLYEXPONENTIAL FUNCTIONS AND POLY-EULER POLYNOMIALS

  • Kurt, Burak
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.19-26
    • /
    • 2021
  • Degenerate versions of the special polynomials and numbers since they have many applications in analytic number theory, combinatorial analysis and p-adic analysis. In this paper, we define the degenerate poly-Euler numbers and polynomials arising from the modified polyexponential functions. We derive explicit relations for these numbers and polynomials. Also, we obtain some identities involving these polynomials and some other special numbers and polynomials.