• Title/Summary/Keyword: Epistemological obstacles

Search Result 19, Processing Time 0.018 seconds

An Analysis on the Epistemological Obstacles of Elementary Students in the Learning of Ratio and Rate (비와 비율 학습에서 나타나는 초등학교 학생들의 인식론적 장애 분석)

  • Park, Hee-Ok;Park, Man-Goo
    • Education of Primary School Mathematics
    • /
    • v.15 no.2
    • /
    • pp.159-170
    • /
    • 2012
  • Many obstacles have been found in the learning of ratio and rate. The types of epistemological obstacles concern 'terms', 'calculations' and 'symbols'. It is important to identify the epistemological obstacles that students must overcome to understand the learning of ratio and rate. In this respect, the present study attempts to figure out what types of epistemological obstacles emerge in the area of learning ratio and rate and where these obstacles are generated from and to search for the teaching implications to correct them. The research questions were to analyze this concepts as follow; A. How do elementary students show the epistemological obstacles in ratio and rate? B. What is the reason for epistemological obstacles of elementary students in the learning of ratio and rate? C. What are the teaching implications to correct epistemological obstacles of elementary students in the learning of ratio and rate? In order to analyze the epistemological obstacles of elementary students in the learning of ratio and rate, the present study was conducted in five different elementary schools in Seoul. The test was administered to 138 fifth grade students who learned ratio and rate. The test was performed three times during six weeks. In case of necessity, additional interviews were carried out for thorough examination. The final results of the study are summarized as follows. The epistemological obstacles in the learning of ratio and rate can be categorized into three types. The first type concerns 'terms'. The reason is that realistic context is not sufficient, a definition is too formal. The second type of epistemological obstacle concerns 'calculations'. This second obstacle is caused by the lack of multiplication thought in mathematical problems. As a result of this study, the following conclusions have been made. The epistemological obstacles cannot be helped. They are part of the natural learning process. It is necessary to understand the reasons and search for the teaching implications. Every teacher must try to develop the teaching method.

Historical Development and Epistemological Obstacles on the Function Concepts (함수 개념의 역사적 발달과 인식론적 장애)

  • 이종희
    • Journal of Educational Research in Mathematics
    • /
    • v.9 no.1
    • /
    • pp.133-150
    • /
    • 1999
  • In this study, we tried to make histo-genetic analyses necessary to identify epistemological obstacles on the function concepts. Historical development on the function concept was analysed. From these analyses, we obtain epistemological obstacles as follows: the perception of changes in the surrounding world, mathematical philosophy, number concepts, variable concepts, relationships between independent variables and dependent variables, concepts of definitions.

  • PDF

Epistemological Obstacles in the Learning of Area in Plane Figures (평면도형의 넓이 학습에서 나타나는 인식론적 장애)

  • Park, Eun-Yul;Paik, Suck-Yoon
    • Journal of Educational Research in Mathematics
    • /
    • v.20 no.3
    • /
    • pp.305-322
    • /
    • 2010
  • The epistemological obstacles in the area learning of plane figure can be categorized into two types that is closely related to an attribute of measurement and is strongly connected with unit square. First, reasons for the obstacle related to an attribute of measurement are that 'area' is in conflict. with 'length' and the definition of 'plane figure' is not accordance with that of 'measurement'. Second, the causes of epistemological obstacles related to unit square are that unit square is not a basic unit to students and students have little understanding of the conception of the two dimensions. Thus, To overcome the obstacle related to an attribute of measurement, students must be able to distinguish between 'area' and 'length' through a variety of measurement activities. And, the definition of area needs to be redefined with the conception of measurement. Also, the textbook should make it possible to help students to induce the formula with the conception of 'array' and facilitate the application of formula in an integrated way. Meanwhile, To overcome obstacles related to unit square, authentic subject matter of real life and the various shapes of area need to be introduced in order for students to practice sufficient activities of each measure stage. Furthermore, teachers should seek for the pedagogical ways such as concrete manipulable activities to help them to grasp the continuous feature of the conception of area. Finally, it must be study on epistemological obstacles for good understanding. As present the cause and the teaching implication of epistemological obstacles through the research of epistemological obstacles, it must be solved.

  • PDF

A mathematics-educational investigation on the philosophy of science of Bachelard - focused on the Dialectical Developments of Science (Bachelard 과학철학의 수학교육학적 의미 탐색 - 변증법적 발달을 중심으로)

  • Joung, Youn Joon
    • Journal of Educational Research in Mathematics
    • /
    • v.23 no.2
    • /
    • pp.237-252
    • /
    • 2013
  • The philosophy of science of Bachelard is introduced mainly with epistemological obstacles in the discussions within mathematics education. In his philosophy, epistemological obstacles are connected with the dialectical developments of science. Science progresses through generalization of concepts and theories by negating things which were recognized as obvious. These processes start with ruptures against the existing knowledge. Epistemological obstacles are failure in keeping distance with the existing knowledge when reorganization is needed. This concept means that there are the inherent difficulties in the processes of concept formation. Finally I compare the view of Bachelard on the developments of science and the 'interiorization-condensation-objectification' scheme of reflexive abstraction in mathematics education and discuss the inherent difficulties in the learning mathematics.

  • PDF

Difficulties and Alternative Ways to learn Irrational Number Concept in terms of Notation (표기 관점에서 무리수 개념 학습의 어려움과 대안)

  • Kang, Jeong Gi
    • Journal of the Korean School Mathematics Society
    • /
    • v.19 no.1
    • /
    • pp.63-82
    • /
    • 2016
  • Mathematical notation is the main means to realize the power of mathematics. Under this perspective, this study analyzed the difficulties of learning an irrational number concept in terms of notation. I tried to find ways to overcome the difficulties arising from the notation. There are two primary ideas in the notation of irrational number using root. The first is that an irrational number should be represented by letter because it can not be expressed by decimal or fraction. The second is that $\sqrt{2}$ is a notation added the number in order to highlight the features that it can be 2 when it is squared. However it is difficult for learner to notice the reasons for using the root because the textbook does not provide the opportunity to discover. Furthermore, the reduction of the transparency for the letter in the development of history is more difficult to access from the conceptual aspects. Thus 'epistemological obstacles resulting from the double context' and 'epistemological obstacles originated by strengthening the transparency of the number' is expected. To overcome such epistemological obstacles, it is necessary to premise 'providing opportunities for development of notation' and 'an experience using the notation enhanced the transparency of the letter that the existing'. Based on these principles, this study proposed a plan consisting of six steps.

An Analysis on Cognitive Obstacles While Doing Addition and Subtraction with Fractions (분수 덧셈, 뺄셈에서 나타나는 인지적 장애 현상 분석)

  • Kim, Mi-Young;Paik, Suck-Yoon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.14 no.2
    • /
    • pp.241-262
    • /
    • 2010
  • This study was carried out to identify the cognitive obstacles while using addition and subtraction with fractions, and to analyze the sources of cognitive obstacles. For this purpose, the following research questions were established : 1. What errors do elementary students make while performing the operations with fractions, and what cognitive obstacles do they have? 2. What sources cause the cognitive obstacles to occur? The results obtained in this study were as follows : First, the student's cognitive obstacles were classified as those operating with same denominators, different denominators, and both. Some common cognitive obstacles that occurred when operating with same denominators and with different denominators were: the students would use division instead of addition and subtraction to solve their problems, when adding fractions, the students would make a natural number as their answer, the students incorporated different solving methods when working with improper fractions, as well as, making errors when reducing fractions. Cognitive obstacles in operating with same denominators were: adding the natural number to the numerator, subtracting the small number from the big number without carrying over, and making errors when doing so. Cognitive obstacles while operating with different denominators were their understanding of how to work with the denominators and numerators, and they made errors when reducing fractions to common denominators. Second, the factors that affected these cognitive obstacles were classified as epistemological factors, psychological factors, and didactical factors. The epistemological factors that affected the cognitive obstacles when using addition and subtraction with fractions were focused on hasty generalizations, intuition, linguistic representation, portions. The psychological factors that affected the cognitive obstacles were focused on instrumental understanding, notion image, obsession with operation of natural numbers, and constraint satisfaction.

  • PDF

A Historical Analysis of Barrow's Theorem and Its Educational Implication (Barrow 정리의 수학사적 분석과 그에 따른 교육적 시사점에 대한 연구)

  • Park, SunYong
    • Journal for History of Mathematics
    • /
    • v.26 no.1
    • /
    • pp.85-101
    • /
    • 2013
  • This study is to analyse the characteristics of Barrow's theorem on the historical standpoint of hermeneutics and to discuss the teaching-learning sequence for guiding students to reinvent the calculus according to historico-genetic principle. By the historical analysis on the Barrow's theorem, we show the geometric feature of the theorem, conjecture the Barrow's intention in dealing with it, and consider the epistemological obstacles undergone by Barrow. On a basis of this result, we suggest a purposeful and meaning-oriented teaching-learning way for students to realize the sameness of the 'integration' and 'anti-differentiation', and point out the shortcomings and supplement point in current School Mathematic Calculus.

Understanding of the concept of infinity and the role of intuition (무한 개념의 이해와 직관의 역할)

  • 이대현
    • Journal of Educational Research in Mathematics
    • /
    • v.11 no.2
    • /
    • pp.341-349
    • /
    • 2001
  • Infinity is one of the important concept in mathematics, science, philosophy etc. In history of mathematics, potential infinity concept conflicts with actual infinity concept. Reason that mathematicians refuse actual infinity concept during long period is because that actual infinity concept causes difficulty in our perceptions. This phenomenon is called epistemological obstacle by Brousseau. Potential infinity concept causes difficulty like history of development of infinity concept in mathematics learning. Even though students team about actual infinity concept, they use potential infinity concept in problem solving process. Therefore, we must make clear epistemological obstacles of infinity concept and must overcome them in learning of infinity concept. For this, it is useful to experience visualization about infinity concept. Also, it is to develop meta-cognition ability that students analyze and control their problem solving process. Conclusively, students must adjust potential infinity concept, and understand actual infinity concept that is defined in formal mathematics system.

  • PDF

The Metaphorical Model of Archimedes' Idea on the Sum of Geometrical Series (무한 등비급수의 합에 대한 Archimedes의 아이디어의 은유적 모델과 그 교육적 활용)

  • Lee, Seoung Woo
    • School Mathematics
    • /
    • v.18 no.1
    • /
    • pp.215-229
    • /
    • 2016
  • This study aims to identify Archimedes' idea used while proving proposition 23 in 'Quadrature of the Parabola' and to provide an alternative way for finding the sum of geometric series without applying the concept of limit by extending the idea though metaphor. This metaphorical model is characterized as static and thus can be complimentary to the dynamic aspect of limit concept adopted in Korean high school mathematics textbooks. In addition, middle school students can understand $0.999{\cdots}=1$ with this model in a structural way differently from the operative one suggested in Korean middle school mathematics textbooks. In this respect, I argue that the metaphorical model can be an useful educational tool for Korean secondary students to overcome epistemological obstacles inherent in the concepts of infinity and limit by making it possible to transfer from geometrical context to algebraic context.

On the Teaching of Algebra through Historico -Genetic Analysis (역사-발생적 분석을 통한 대수 지도)

  • Kim, Sung-Joon
    • Journal for History of Mathematics
    • /
    • v.18 no.3
    • /
    • pp.91-106
    • /
    • 2005
  • History of mathematics must be analysed to discuss mathematical reality and thinking. Analysis of history of mathematics is the method of understanding mathematical activity, by these analysis can we know how historically mathematician' activity progress and mathematical concepts develop. In this respects, we investigate teaching algebra through historico-genetic analysis and propose historico-genetic analysis as alternative method to improve of teaching school algebra. First the necessity of historico-genetic analysis is discussed, and we think of epistemological obstacles through these analysis. Next we focus two concepts i.e. letters(unknowns) and negative numbers which is dealt with school algebra. To apply historico-genetic analysis to school algebra, some historical texts relating to letters and negative numbers is analysed, and mathematics educational discussions is followed with experimental researches.

  • PDF