• 제목/요약/키워드: Epi layer

검색결과 107건 처리시간 0.025초

이중에피층을 갖는 SOI LIGBT의 항복전압 특성분석 (Analysis of the breakdown characteristics of SOI LIGBT with dual-epi layer)

  • 김형우;김상철;서길수;김은동
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.249-251
    • /
    • 2003
  • This paper discribes the analysis of the breakdown voltage characteristics of SOI LIGBT with dual epi-layer. In case of SOI LIGBT with dual epi-layer, if we used high doping concentration in epi-layer, we obtained higher breakdown voltage compared with typical device because of charge compensation effect, and we obtained low on-state resistivity characteristic in the same breakdown voltage. In this paper, we analyzed on-state and off-state characteristics of SOI LIGBT with dual epi-layer. Breakdown voltage of proposed LIGBT was shown 125V when $T_1=T_2=2.5{\mu}m$, $N_1=7{\times}10^{15}/cm^3$ and $N_2=3{\times}10^{15}/cm^3$, respectively Although we used high doping concentration and thin epi-layer thickness, breakdown voltage was increased compared with conventional devices.

  • PDF

RESURE LDMOS의 항복전압에 관한 이론적인 고찰 (A theoretical study on the breakdown voltage of the RESURF LDMOS)

  • 한승엽;정상구
    • 전자공학회논문지D
    • /
    • 제35D권8호
    • /
    • pp.38-43
    • /
    • 1998
  • An analytical model for the surface field distribution of the RESURF (reduced surface field)LD(lateral double-diffused) MOS is presented in terms of the doping concentration, the thickness of the n epi layer, the p substrate concentration, and the epi layer length. The reuslts are used to determine the breakdown voltage due to the surface field as a function of the epi layer length. The maximum breakdown voltage of the device is found to be that of the vertical n$^{+}$n$^{[-10]}$ p$^{[-10]}$ junction. Analytical results of the breakdown voltage vs. the epi layer length agree well with the numerical simulation results using MEDICI.I.

  • PDF

4H-SiC RESURF LDMOSFET 소자의 전기적 특성분석 (Analysis of the Electrical Characteristics of 4H-SiC LDMOSFET)

  • 김형우;김상철;방욱;김남균;서길수;김은동
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.101-102
    • /
    • 2005
  • SiC lateral power semiconductor device has high breakdown voltage and low on-state voltage drop due to the material characteristics. And, because the high breakdown voltage can be obtained, RESURF technique is mostly used in silicon power semiconductor devices. In this paper, we presents the electrical characteristics of the 4H-SiC RESURF LDMOSFET as a function of the epi-layer length, concentration and thickness. 240~780V of breakdown voltage can be obtained as a function of epi-layer length and thickness with same epi-layer concentration.

  • PDF

에피층 농도 변화에 따른 Multi-RESURF SOI LDMOSFET의 전기적 특성 분석 (Study on the Electrical Characteristics of the Multi-RESURF SOI LDMOSFET as a Function of Epi-layer Concentration)

  • 김형우;서길수;방욱;김기현;김남균
    • 한국전기전자재료학회논문지
    • /
    • 제19권9호
    • /
    • pp.813-817
    • /
    • 2006
  • In this paper, we analyzed the breakdown voltage and on-resistance of the multi-RESURF SOI LDMOSFET as a function of epi-layer concentration. P-/n-epi layer thickness and doping concentration of the proposed structure are varied from $2{\sim}5{\mu}m\;and\;1\{times}10^{15}/cm^{3}^{\sim}9\{times}10^{15}/cm^{3}$ to find optimum breakdown voltage and on-resistance of the proposed structure. The maximum breakdown voltage of the proposed structure is $224\;V\;at\;R_{on}=0.2{\Omega}-mon^{2}\;with\;P_{epi}=3\{times}10^{15}/cm^{3},\;N_{epi}=7\{times}10^{15}/cm^{3}\;and\;L_{epi}=10{\mu}m$. Characteristics of the device are verified by two-dimensional process simulator ATHENA and device simulator ATLAS.

Epilayer Optimization of NPN SiGe HBT with n+ Buried Layer Compatible With Fully Depleted SOI CMOS Technology

  • Misra, Prasanna Kumar;Qureshi, S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권3호
    • /
    • pp.274-283
    • /
    • 2014
  • In this paper, the epi layer of npn SOI HBT with n+ buried layer has been studied through Sentaurus process and device simulator. The doping value of the deposited epi layer has been varied for the npn HBT to achieve improved $f_tBV_{CEO}$ product (397 GHzV). As the $BV_{CEO}$ value is higher for low value of epi layer doping, higher supply voltage can be used to increase the $f_t$ value of the HBT. At 1.8 V $V_{CE}$, the $f_tBV_{CEO}$ product of HBT is 465.5 GHzV. Further, the film thickness of the epi layer of the SOI HBT has been scaled for better performance (426.8 GHzV $f_tBV_{CEO}$ product at 1.2 V $V_{CE}$). The addition of this HBT module to fully depleted SOI CMOS technology would provide better solution for realizing wireless circuits and systems for 60 GHz short range communication and 77 GHz automotive radar applications. This SOI HBT together with SOI CMOS has potential for future high performance SOI BiCMOS technology.

IGBT 순방향 전압강하의 계산 (Calculation of Forward Voltage Drop of IGBTs)

  • 최병성;정상구
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권3호
    • /
    • pp.161-164
    • /
    • 2000
  • A simple methode for calculating the forward voltage drop of IGBTs is presented, on the voltage drops on the p+ body, the reverse biased depletion region between p+body and epi-layer, the epi layer, and the forward biased collector junction. The decrease of the total current density in the epi layer near the p+ body is taken into account. The proposed methode allows a simple but accurate determination of the forward voltage drop in IGBTs, avoiding the complex path taken in the previous model for the forward voltage drops on channel, accumulation region, and epi region. Numerical simulations for 1kV NPT-IGBT with a uniformly doped collector are shown to support the analytical results.

  • PDF

Polished Wafer와 Epi-Layer Wafer의 표면 처리에 따른 표면 화학적/물리적 특성 (Comparison on the Physical & Chemical Characteristics in Surface of Polished Wafer and Epi-Layer Wafer)

  • 김진서;서형탁
    • 한국재료학회지
    • /
    • 제24권12호
    • /
    • pp.682-688
    • /
    • 2014
  • Physical and chemical changes in a polished wafer and in $2.5{\mu}m$ & $4{\mu}m$ epitaxially grown Si layer wafers (Epilayer wafer) after surface treatment were investigated. We characterized the influence of surface treatment on wafer properties such as surface roughness and the chemical composition and bonds. After each surface treatment, the physical change of the wafer surface was evaluated by atomic force microscopy to confirm the surface morphology and roughness. In addition, chemical changes in the wafer surface were studied by X-ray photoemission spectroscopy measurement. Changes in the chemical composition were confirmed before and after the surface treatment. By combined analysis of the physical and chemical changes, we found that diluted hydrofluoric acid treatment is more effective than buffered oxide etching for $SiO_2$ removal in both polished and Epi-Layer wafers; however, the etch rate and the surface roughness in the given treatment are different among the polished $2.5{\mu}m$ and $4{\mu}m$ Epi-layer wafers in spite of the identical bulk structural properties of these wafers. This study therefore suggests that independent surface treatment optimization is required for each wafer type, $2.5{\mu}m$ and $4{\mu}m$, due to the meaningful differences in the initial surface chemical and physical properties.

N-epi 영역과 Channel 폭에 따른 4H-SiC 고전력 VJFET 설계 (4H-SiC High Power VJFET with modulation of n-epi layer and channel dimension)

  • 안정준;방욱;김상철;김남균;구상모
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.350-350
    • /
    • 2010
  • Silicon carbide (SiC), one of the well known wide band gap semiconductors, shows high thermal conductivities, chemical inertness and breakdown energies. The design of normally-off 4H-SiC VJFETs [1] has been reported and 4H-SiC VJFETs with different lateral JFET channel opening dimensions have been studied [2]. In this work, 4H-SiC based VJFETs has been designed using the device simulator (ATLAS, Silvaco Data System, Inc). We varied the n-epi layer thickness (from $6\;{\mu}m$ to $10\;{\mu}m$) and the channel width (from $0.9\;{\mu}m$ to $1.2\;{\mu}m$), and investigated the static characteristics as blocking voltages, threshold voltages, on-resistances. We have shown that silicon carbide JFET structures of highly intensified blocking voltages with optimized figures of merit can thus be achieved by adjusting the epi layer thickness and channel width.

  • PDF

r면 사파이어 위에 HVPE로 성장된 a면 GaN 에피층의 성장온도 효과 및 1000℃에서의 V/III족 비의 효과 (The effects of growth temperatures and V/III ratios at 1000℃ for a-plane GaN epi-layer on r-plane sapphire grown by HVPE)

  • 하주형;박미선;이원재;최영준;이혜용
    • 한국결정성장학회지
    • /
    • 제25권2호
    • /
    • pp.56-61
    • /
    • 2015
  • Ga source 채널의 HCl flow가 700 sccm, 그리고 V/III족 비가 10으로 고정되었을 때, r-면 사파이어 위에 HVPE로 성장된 a-면 GaN 에피층 특성에 대한 성장 온도 영향을 연구하였다. 추가적으로 성장온도가 $1000^{\circ}C$, 그리고 Ga source 채널의 HCl flow가 700 sccm으로 고정되었을 때, 공급가스에 대한 V/III족 비 영향에 대하여 연구하였다. 성장온도가 높아지면서, a-면 GaN 에피층에 대한 (11-20) 면의 Rocking curve(RC)의 반치폭 값이 감소하였고 a-면 GaN 에피층의 성장두께는 증가하였다. $1000^{\circ}C$에서 V/III족 비가 높아짐에 따라, (11-20) 면의 RC의 반치폭 값이 감소하였고, a-면 GaN 에피층의 성장두께가 증가하였다. $1000^{\circ}C$와 V/III족 비=10에서 성장된 a-면 GaN 에피층이 (11-20) 면에서 가장 낮은 RC 반치폭인 734 arcsec을 보이며, RC측정을 통한 (11-20) 면의 방위각 가장 작은 영향을 보여준다.

선형 집적회로(IC) 설계의 문제점 (Design problem of Line)

  • 김만진
    • 대한전자공학회논문지
    • /
    • 제13권3호
    • /
    • pp.22-27
    • /
    • 1976
  • 집적회로(I.C)의 설계에 있어서는 평수구조의 변형만이 가능하므로 여러가지 다른 트랜지스터 (Transistor)가 결합하여 하나의 특정한 기능을 발휘하게 되는 선형회로에는 회로의 설계와 동시에 사용될 적층(EPI)의 비저항 및 두께와 적층(EPI)과 기판 사이에 삽입되는 이침층(Buried Layer)의 구조 등을 정확히 알아야 한다. 본 연구에서는 집적회로의 동작전압과 적층 두께및 비저항과의 관계를 실측치와 비교분석 하였고 이 결과를 선형 집적회로 설계에 이용 가능하도록 도시하였다. For linear IC design, one has to know the epi thickness, resistivity, and structure of buried island inserted between epi and substrate because the mask structure can only be changed for linear IC consisted of various type of transistors to be made for desired specific function. The interrelation of IC operational and saturation voltages with epi resistivity, theckness and divice structure are studied and presented in graphic forms so that IC design engineers can utilize them.

  • PDF