• Title/Summary/Keyword: Energy and Environmental Performance

Search Result 1,513, Processing Time 0.032 seconds

Parametric study of energy dissipation mechanisms of hybrid masonry structures

  • Gao, Zhenjia;Nistor, Mihaela;Stanciulescu, Ilinca
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.387-401
    • /
    • 2021
  • This paper provides a methodology to analyze the seismic performance of different component designs in hybrid masonry structures (HMS). HMS, comprised of masonry panels, steel frames and plate connectors is a relatively new structural system with potential applications in high seismic areas. HMS dissipate earthquake energy through yielding in the steel components and damage in the masonry panels. Currently, there are no complete codes to assist with the design of the energy dissipation components of HMS and there have been no computational studies performed to aid in the understanding of the system energy dissipation mechanisms. This paper presents parametric studies based on calibrated computational models to extrapolate the test data to a wider range of connector strengths and more varied reinforcement patterns and reinforcement ratios of the masonry panels. The results of the numerical studies are used to provide a methodology to examine the effect of connector strength and masonry panel design on the energy dissipation in HMS systems. We use as test cases two story structures subjected to cyclic loading due to the availability of experimental data for these configurations. The methodology presented is however general and can be applied to arbitrary panel geometries, and column and story numbers.

The Research on Consumers' Actual Value for Environmental Performance of houses (주택의 환경 성능에 대한 소비자의 실질적 가치에 대한 연구)

  • Park, Min-Sun;Hagishima, Aya;Chun, Chung-Yoon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.318-323
    • /
    • 2008
  • First aim of this study is to investigate consumer's actual value for environment related performance of house by using three different method, Ranking, Analytical Hierarchy Process (AHP) and Conjoint Analysis method. Second aim is to estimate consumers' monetary value about environment related factor through Marginal Willing to Pay(MWTP), and third aim is to find out the difference of values between the groups classified according to respondents' characteristics. A questionnaire survey was carried out in Seoul in order to clarify the preference and monetary value of four selected attributes. They are environmental performance, residents' health, home automation and increase of floor area. As a result, people showed high values in the order of health, environmental consideration, increase of floor area and home automation. Moreover, it was found out that MWTP for environmental performance and health are higher than market price. In addition, the group of high age and group of female showed high values for the reduction of $CO_2$ emission

  • PDF

Design of Micro Flywheel Energy Storage System (초소형 플라이휠 에너지 저장장치의 설계)

  • Yi, Ji-Eun;Yoo, Seong-Yeol;Noh, Myoung-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.879-884
    • /
    • 2007
  • Flywheel energy storage systems have advantages over other types of energy storage devices in such aspects as unlimited charge/discharge cycles and environmental friendliness. In this paper we propose a millimeter scale flywheel energy storage device. The flywheel is supported by a pair of passive magnetic bearings and rotated by a toroidally wound electric motor/generator. The geometry of the bearings is optimized for the maximum dynamic performance.

  • PDF

An Experimental study on the Performance of a Refrigeration System using Nozzles as Expansion Devices (노즐 팽창장치를 적용한 냉동시스템의 성능에 관한 실험적 연구)

  • Youn Cheol Park;Gwang Soo Ko
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • To In this study, a nozzle which is designed to work as expansion device was installed in a refrigeration system and performance test was conducted. The nozzle has 0.8mm, 1.0mm, 1.2mm diameter and inserted in a body of the devices. System performance was compared with a electronic expansion device(EEV, electric expansion valve) and designed nozzles at the environmental conditions such as dry bulb and wet bulb temperature. To reduce energy loss in the evaporator, a nozzle was inserted into the evaporator. In the comparison test, the opening of the EEV was adjusted to the same diameter as the 3 nozzles, and the experiments conducted at a 27℃ dry bulb temperature and 19.5℃ wet bulb temperature with 50% relative humidity as defined at KS C 9306 standard. To find out the effect of the environmental condition, the bulb temperature was varied 5 degree lower and higher than the standard condition temperature with the same relative humidity condition at 50%. The air flow rate to the evaporator was also changed 4, 7 and 10 m3/min. As results, the temperature drop in the nozzle was 153% higher than that of the EEV and the enhancement of the performance(COP) was up to 125.7% if install the nozzles in the refrigeration system. The highest performance was obatained at 1.0mm diameter nozzle.

High performance γ-ray imager using dual anti-mask method for the investigation of high-energy nuclear materials

  • Lee, Taewoong;Lee, Wonho
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2371-2376
    • /
    • 2021
  • As the γ-ray energy increases, a reconstructed image becomes noisy and blurred due to the penetration of the γ-ray through the coded mask. Therefore, the thickness of the coded mask was increased for high energy regions, resulting in severely decreased the performance of the detection efficiency due to self-collimation by the mask. In order to overcome the limitation, a modified uniformly redundant array γ-ray imaging system using dual anti-mask method was developed, and its performance was compared and evaluated in high-energy radiation region. In the dual anti-mask method, the two shadow images, including the subtraction of background events, can simultaneously contribute to the reconstructed image. Moreover, the reconstructed images using each shadow image were integrated using a hybrid update maximum likelihood expectation maximization (h-MLEM). Using the quantitative evaluation method, the performance of the dual anti-mask method was compared with the previously developed collimation methods. As the shadow image which was subtracted the background events leads to a higher-quality reconstructed image, the reconstructed image of the dual anti-mask method showed high performance among the three collimation methods. Finally, the quantitative evaluation method proves that the performance of the dual anti-mask method was better than that of the previously reconstruction methods.

A Study on Assessment of Fire and Evacuation Safety in Environmental Energy Facilities (환경에너지시설의 화재 및 피난 안전성 평가에 관한 연구)

  • Jeon, Yong-Han;Han, Sang-Pil
    • Journal of the Korea Safety Management & Science
    • /
    • v.21 no.4
    • /
    • pp.39-44
    • /
    • 2019
  • In this study, fire and evacuation safety of environmental energy facilities using fire and evacuation simulation was examined as part of performance-oriented design. The worst-case fire scenarios in which fire-fighting facilities such as sprinkler fire extinguishing and smoke control systems are not working, and the FDS analyzes the visibility, temperature distribution, and carbon monoxide concentration distribution through FDS. The safety was examined. As a result, it was proved that evacuation could limit the visibility, temperature, and carbon monoxide concentration in a smooth range, based on the safety standards set by relevant laws. In other words, it was possible to verify the safety of fire and evacuation for environmental energy facilities where a large amount of combustibles and fires coexist.

Environmental Performance Evaluation for Song-do City Constructions by using Green Building Certification Criteria (친환경건축물(親環境建築物) 인증기준(認證基準)을 이용(利用)한 송도국제도시(松島國際都市) 건축물(建築物)의 친환경성(親環境性) 평가(評價))

  • Park, Tae-Bum;Kim, Yong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.3
    • /
    • pp.111-117
    • /
    • 2006
  • Song-do City is a newly constructed city built on land reclaimed from the seaside and the surrounding area. Its development involved a long process since the basic plans for reclamation of the publicly owned seaside area in Song-do were drawn up in September 1979. However, if we take a look at the overall status of the project as it is carried on at present, it is hard to deny that the project is trapped inside the same legal restrictions as are all other existing cities, which permits Song-do City to meet only very minimum standards. This study intends to analyze and assess the Song-do City's environmentally friendly construction and to rate its current development status, exposing any problems and offering alternative solutions. In this paper, the current state of constructions in Song-do City were reviewed. Then a quantitative analysis and assessment for the Song-do City constructions of apartments, complex buildings, office buildings, and school facilities were conducted by using green building certification criteria. Finally the synthetic results of environmental performance evaluation for Song-do city constructions and follow-up suggestions were described.

Dispersant Effect on Thermal Performance of SG (증기발생기 열성능에 미치는 분산제 첨가효과)

  • Lee, Jae-Keun;Moon, Jeon-Soo;Yoon, Seok-Won;Maeng, Wan-Young
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.4
    • /
    • pp.546-551
    • /
    • 2011
  • The corrosion on steam generator tubes of the secondary side of pressurized water reactor inhibits heat transfer. One of the most efficient techniques improving the heat transfer performance of a nuclear electric generation is a corrosion control. The environmental parameters mostly affecting corrosion are materials and chemical additives. It seems that no further corrosion occurs in steels with Polyacrylic acid polymer dispersant treatment. Polyacrylic acid forms a protective coating with uniform thickness on metal surface. Polyacrylic treatment appears to be the most convenient way to enhance the thermal performance by the thermal conductivity improvement in steam generators.

Evaluation on Thermal Performance Along with Constructability and Economic Feasibility of Large-diameter Cast-in-place Energy Pile (대구경 현장타설 에너지파일의 열교환 성능과 시공성 및 경제성 분석)

  • Park, Sangwoo;Sung, Chihun;Lee, Dongseop;Jung, Kyoungsik;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.5
    • /
    • pp.5-21
    • /
    • 2015
  • An energy pile is a novel type of ground heat exchangers (GHEX's) which sets up heat exchange pipes inside a pile foundation, and allows to circulate a working fluid through the pipe for exchanging thermal energy with the surrounding ground stratum. Using existing foundation structure, the energy pile can function not only as a structural foundation but also as a GHEX. In this paper, six full-scale energy piles were constructed in a test bed with various configurations of the heat exchange pipe inside large-diameter cast-in-place piles, that is, three parallel U-type heat exchangers (5, 8 and 10 pairs), two coil type heat exchangers (with a 500 mm and 200 mm pitch), and one S-type heat exchanger. During constructing the energy piles, the constructability of each energy pile was evaluated with consideration of the installation time, the number of workers and any difficulty for installing. In order to evaluate the thermal performance of energy piles, the thermal performance tests were carried out by applying intermittent (8 hours operating-16 hours pause) artificial cooling operation to simulate a cooling load for commercial buildings. Through the thermal performance tests, the heat exchange rates of the six energy piles were evaluated in terms of the heat exchange amount normalized with the length of energy pile and/or the length of heat exchange pipe. Finally, the economic feasibility of energy pile was evaluated according to the various types of heat exchange pipe by calculating demanded expenses per 1 W/m based on the thermal performance test results along with the market value of heat exchange pipes and labor cost.

Performance Evaluation between Alternating Type Process and Recirculating Type Process by using a Mathematical Model (수학적 모델을 활용한 alternating 형태 공정과 recirculating 형태 공정의 성능 평가)

  • Kim, Hyosoo;Kim, Yejin;Cha, Jaewhan;Choi, Soojung;Min, Kyungjin;Kim, Changwon
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.160-167
    • /
    • 2010
  • In this research, the performance evaluation between an alternating type process and a recirculating type process was investigated by using mathematical models. The Advanced Phase Isolation Ditch (APID) process and the $A^2/O$ process were selected the target processes of the alternating type and recirculating type, respectively. For more quantitative evaluation, 5 performance indexes which included economy and energy efficiency as well as effluent quality were used, and various disturbance conditions of influent were given to the process models. As simulation results, the APID process which had the specific operation modes to use the organic matter in influent effectively showed higher efficiency of denitrification than the $A^2/O$ process. In the case of effluent TSS, the $A^2/O$ process that the retention time in reactors could be maintained stably was more effective than the APID process. In the cases of various disturbance condition, although it was identified that both two processes had similar effluent quality, the sludge production of the $A^2/O$ process showed lower than that of the APID process while the APID process showed higher energy efficiency.