DOI QR코드

DOI QR Code

Evaluation on Thermal Performance Along with Constructability and Economic Feasibility of Large-diameter Cast-in-place Energy Pile

대구경 현장타설 에너지파일의 열교환 성능과 시공성 및 경제성 분석

  • Park, Sangwoo (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Sung, Chihun (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Lee, Dongseop (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Jung, Kyoungsik (S-TECH Consulting Group) ;
  • Choi, Hangseok (School of Civil, Environmental and Architectural Engrg., Korea Univ.)
  • 박상우 (고려대학교 건축사회환경공학부) ;
  • 성치훈 (고려대학교 건축사회환경공학부) ;
  • 이동섭 (고려대학교 건축사회환경공학부) ;
  • 정경식 ((주)에스텍컨설팅 그룹) ;
  • 최항석 (고려대학교 건축사회환경공학부)
  • Received : 2014.07.30
  • Accepted : 2015.05.07
  • Published : 2015.05.31

Abstract

An energy pile is a novel type of ground heat exchangers (GHEX's) which sets up heat exchange pipes inside a pile foundation, and allows to circulate a working fluid through the pipe for exchanging thermal energy with the surrounding ground stratum. Using existing foundation structure, the energy pile can function not only as a structural foundation but also as a GHEX. In this paper, six full-scale energy piles were constructed in a test bed with various configurations of the heat exchange pipe inside large-diameter cast-in-place piles, that is, three parallel U-type heat exchangers (5, 8 and 10 pairs), two coil type heat exchangers (with a 500 mm and 200 mm pitch), and one S-type heat exchanger. During constructing the energy piles, the constructability of each energy pile was evaluated with consideration of the installation time, the number of workers and any difficulty for installing. In order to evaluate the thermal performance of energy piles, the thermal performance tests were carried out by applying intermittent (8 hours operating-16 hours pause) artificial cooling operation to simulate a cooling load for commercial buildings. Through the thermal performance tests, the heat exchange rates of the six energy piles were evaluated in terms of the heat exchange amount normalized with the length of energy pile and/or the length of heat exchange pipe. Finally, the economic feasibility of energy pile was evaluated according to the various types of heat exchange pipe by calculating demanded expenses per 1 W/m based on the thermal performance test results along with the market value of heat exchange pipes and labor cost.

에너지파일이란 새로운 형식의 지중열교환기로서, 건물의 기초 구조물인 말뚝 내부에 열교환 파이프를 삽입하고 파이프 내부로 유체를 순환시켜 지반과 말뚝 매질사이의 열교환을 유도한다. 에너지파일은 기존의 기초 구조물을 활용하여, 구조물의 지지 기능과 지중열교환기로서의 기능을 동시에 수행하는 에너지 구조체이다. 본 연구에서는 에너지파일의 실증연구를 위하여 총 6가지 형태의 열교환 파이프가 삽입된 실규모 현장타설 에너지파일을 시험 시공하였다. 열교환 파이프의 형태는 다양한 형태별 성능 및 시공성 비교를 위해 병렬 U형 3본(5쌍, 8쌍, 10쌍), 코일형 2본(피치간격 200mm와 500mm), S형 1본으로 선정하였다. 총 6가지 형태의 열교환 파이프를 시공하면서 시공 소요시간, 인력 소요, 필요 부대시설, 특이사항 등을 정리하여 각 형태별 시공성을 평가하였다. 또한 시공된 현장타설 에너지파일에 대한 열교환 성능 평가시험을 수행하였다. 열교환 성능 평가시험은 실제 상업 건물의 냉방 부하를 모사하기 위하여 8시간 가동 16시간 휴지의 간헐적 가동을 통하여 수행하였다. 열교환 성능 평가시험 결과를 통하여 각 현장타설 에너지파일의 열교환량을 산정하였으며, 이를 에너지파일 근입 깊이 및 열교환 파이프 길이로 정규화하여 각 형태별 열교환 효율을 평가하였다. 마지막으로 현장타설 에너지파일의 경제성을 분석하기 위하여 각 형태별 에너지파일의 시공비와 에너지파일 단위 길이 당 열교환 성능을 통해 1W/m 당 소요 비용을 산정하였다.

Keywords

References

  1. Baek, S-K (2004), "Study on Ground-coupled Heat Pump System Using Hollow Piles", Ph.D. Thesis, Busan University, Korea.
  2. Bourne-Webb, P. J., Amatya, B., Soga, K., Amis, T., Davidson, C., and Payne, P. (2009), Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles, Geotechniques, Vol.59, No.3, pp.237-248. https://doi.org/10.1680/geot.2009.59.3.237
  3. Brandl, H. (2006), Energy foundation and other thermo-active ground structures, Geotechniques, Vol.56, No.2, pp.81-122. https://doi.org/10.1680/geot.2006.56.2.81
  4. EPA. (1993), Space Conditioning: The Next Frontier, Office of Air and Radiation. 430-R-93-0044 (4/93), US Energy Protection Agency, Washington DC.
  5. Gao, J., Zhang, X., Liu, J., Li, K., and Yang, J. (2008), Numerical and experimental assessment of thermal performance of vertical energy piles, An application, Applied Energy, Vol.85, pp.901-910. https://doi.org/10.1016/j.apenergy.2008.02.010
  6. Hamada, Y., Saitoh, H., Nakamura, M., Kubota, H., and Ochifuji, K. (2007), Field performance of an energy pile system for space heating, Energy and Building, Vol.39, pp.517-524. https://doi.org/10.1016/j.enbuild.2006.09.006
  7. Jun, L., Zhang, X., Gao, J., and Yang, J. (2009), Evaluation of heat exchange rate of GHW in geothermal heat pump system, Renewable Energy, Vol.34, pp.2898-2904. https://doi.org/10.1016/j.renene.2009.04.009
  8. Laloui, L., Moreni, M., and Vulliet, L. (2003), Behavior of a dualpurpose pile as foundation and heat exchanger, Canadian Geotechnical Journal, Vol.40, No.2, pp.388-402. https://doi.org/10.1139/t02-117
  9. Laloui, L., Nuth, M., and Vulliet, L. (2006), Experimental and numerical investigations of the behavior of a heat exchanger pile, International Journal for Numerical and Analytical Methods in Geomechanics, Vol.30, pp.763-781. https://doi.org/10.1002/nag.499
  10. Lee, S. J., Min, H. S., Song, J. Y., and Jeong, S. S. (2010), Thermal influential factors of energy pile, Journal of Korean Society of Civil Engineers, Vol.30, No.6C, pp.231-239.
  11. Li, X., Chen, Y., Chen, Z., and Zhao, J. (2006), Thermal performances of different types of underground heat exchangers, Energy and Building, Vol.38, pp.543-547. https://doi.org/10.1016/j.enbuild.2005.09.002
  12. Nam, Y., Hwang, S., and Ooka, R. (2007), Geothermal heat pump system using foundation pile structures, Journal of Korea Society of Geothermal Energy Engineers, Vol.3, No.1, pp.51-60.
  13. Pahud, D. and Hubbuck, M. (2007), Measured thermal performances of the energy pile system of the duck midfield as Zurick Airport, Proceedings European Geothermal Congress 2007; Unterhaching, Germany, 30 May-1 June.
  14. Park, S., Sohn, J. R., Park, Y. B., Ryu, H. K., and Choi, H. (2013), Study on thermal behavior and design method for coil-type PHC energy pile, Journal of Korea Geotechnical Society, Vol.29, No.8, pp.37-51. https://doi.org/10.7843/kgs.2013.29.8.37
  15. Park, Y. B., Park, J. B., and Lim, H. S. (2007), Construction method of ground heat exchanger using energy pile in ground source heat system, Journal of Korean Society of Civil Engineers, Vol.55, No.7, pp.41-46.
  16. Wood, C. J., Liu, H., and Riffat, S. B. (2009), Use of energy piles in a residential building, and effects on ground temperature and heat pump efficiency, Geotechniques, Vol.59, No.3, pp.287-290. https://doi.org/10.1680/geot.2009.59.3.287
  17. Yu, H. K. (2008), Development & performance evaluation of ground heat exchanger utilizing PHC pile foundation of building, Journal of the Korean Solar Energy Society, Vol.28, No.5, pp.56-64.