• Title/Summary/Keyword: Elevated carbon dioxide

Search Result 61, Processing Time 0.027 seconds

Strategies to Mitigate Enteric Methane Emissions from Ruminant Animals

  • Tseten, Tenzin;Sanjorjo, Rey Anthony;Kwon, Moonhyuk;Kim, Seon-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.269-277
    • /
    • 2022
  • Human activities account for approximately two-thirds of global methane emissions, wherein the livestock sector is the single massive methane emitter. Methane is a potent greenhouse gas of over 21 times the warming effect of carbon dioxide. In the rumen, methanogens produce methane as a by-product of anaerobic fermentation. Methane released from ruminants is considered as a loss of feed energy that could otherwise be used for productivity. Economic progress and growing population will inflate meat and milk product demands, causing elevated methane emissions from this sector. In this review, diverse approaches from feed manipulation to the supplementation of organic and inorganic feed additives and direct-fed microbial in mitigating enteric methane emissions from ruminant livestock are summarized. These approaches directly or indirectly alter the rumen microbial structure thereby reducing rumen methanogenesis. Though many inorganic feed additives have remarkably reduced methane emissions from ruminants, their usage as feed additives remains unappealing because of health and safety concerns. Hence, feed additives sourced from biological materials such as direct-fed microbials have emerged as a promising technique in mitigating enteric methane emissions.

A Study on Reactions of Carbon-Carbonate Mixture at Elevated Temperature: As an Anode Media of SO-DCFC (SO-DCFC 적용을 위한 카본블랙-탄산염 혼합 매개체의 고온 반응 특성에 대한 연구)

  • Yu, Jun Ho;Kang, Kyungtae;Hwang, Jun Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.8
    • /
    • pp.677-685
    • /
    • 2014
  • A direct carbon fuel cell (DCFC) generates electricity directly by converting the chemical energy in coal. In particular, a DCFC system with a solid oxide electrolyte and molten carbonate anode media has been proposed by SRI. In this system, however, there are conflicting effects of temperature, which enhances the ion conductivity of the solid electrolyte and reactivity at the electrodes while causing a stability problem for the anode media. In this study, the effect of temperature on the stability of a carbon-carbonate mixture was investigated experimentally. TGA analysis was conducted under either nitrogen or carbon dioxide ambient for $Li_2CO_3$, $K_2CO_3$, and their mixtures with carbon black. The composition of the exit gas was also monitored during temperature elevation. A simplified reaction model was suggested by considering the decomposition of carbonates and the catalyzed Boudouard reactions. The suggested model could well explain both the measured weight loss of the mixture and the gas formation from it.

Temperature and CO2 Level Influence Potato leafroll virus Infection in Solanum tuberosum

  • Chung, Bong Nam;Koh, Sang Wook;Choi, Kyung San;Joa, Jae Ho;Kim, Chun Hwan;Selvakumar, Gopal
    • The Plant Pathology Journal
    • /
    • v.33 no.5
    • /
    • pp.522-527
    • /
    • 2017
  • We determined the effects of atmospheric temperature ($10-30{\pm}2^{\circ}C$ in $5^{\circ}C$ increments) and carbon dioxide ($CO_2$) levels ($400{\pm}50ppm$, $540{\pm}50ppm$, and $940{\pm}50ppm$) on the infection of Solanum tuberosum cv. Chubaek by Potato leafroll virus (PLRV). Below $CO_2$ levels of $400{\pm}50ppm$, the PLRV infection rate and RNA content in plant tissues increased as the temperature increased to $20{\pm}2^{\circ}C$, but declined at higher temperatures. At high $CO_2$ levels ($940{\pm}50ppm$), more plants were infected by PLRV at $30{\pm}2^{\circ}C$ than at 20 or $25{\pm}2^{\circ}C$, whereas PLRV RNA content was unchanged in the $20-30{\pm}2^{\circ}C$ temperature range. The effects of atmospheric $CO_2$ concentration on the acquisition of PLRV by Myzus persicae and accumulation of PLRV RNA in plant tissues were investigated using a growth chamber at $20{\pm}2^{\circ}C$. The M. persicae PLRV RNA content slightly increased at elevated $CO_2$ levels ($940{\pm}50ppm$), but this increase was not statistically significant. Transmission rates of PLRV by Physalis floridana increased as $CO_2$ concentration increased. More PLRV RNA accumulated in potato plants maintained at 540 or $940{\pm}50ppm$ $CO_2$, than in plants maintained at $400{\pm}50ppm$. This is the first evidence of greater PLRV RNA accumulation and larger numbers of S. tuberosum plants infected by PLRV under conditions of combined high $CO_2$ levels ($940{\pm}50ppm$) and high temperature ($30{\pm}2^{\circ}C$).

Chronic Effect Exposed to Carbon Dioxide in Benthic Environment with Marine Invertebrates Copepod(Tisbe sp.) and Amphipod(Monocorophium acherusicum) (저서환경에서 이산화탄소 노출에 따른 국내산 해산무척추동물 요각류(Tisbe sp.)와 단각류(Monocorophium acherusicum)의 만성영향)

  • Moon, Seong-Dae;Choi, Tae Seob;Sung, Chan-Gyoung;Lee, Jung-Suk;Park, Young-Gyu;Kang, Seong-Gil
    • Journal of Environmental Science International
    • /
    • v.22 no.3
    • /
    • pp.359-369
    • /
    • 2013
  • Chronic effects such as reproduction and population dynamics with elevated $CO_2$ concentration were evaluated using two representative marine benthic species, copepod (Tisbe sp.) and amphipod (Monocorophium acherusicum) adopting long-term exposure. Juvenile copepod and amphipod individuals were cultivated in the seawater equilibrated with control air (0.395 mmol $CO_2$/air mol) and high $CO_2$ air having 0.998, to 3.03, 10.3, and 30.1 mmol $CO_2$/air mol during 20 and 46 days, respectively. After the exposure period, the number of benthic invertebrate was counted with separate larval and juvenile stage such as naupliar, copepodid and adult for copepod, or neonate and adult for amphipod, respectively. The individual number of both test species at each life-stage was significantly decreased in seawater with 10.3 mmol $CO_2$/air mol or higher. Recently, the technology of marine $CO_2$ sequestration has been developed for the reduction of $CO_2$ emission, which may cause climate change. However, under various scenarios of $CO_2$ leaks during the injection process or sequestrated $CO_2$ in marine geological structure, the potential risk to organism including various invertebrates can be expected to exposure. So the results of this study suggested that the detailed consideration on the adverse effect with marine ecosystem can be prerequisite for the marine $CO_2$ sequestration projects.

Relationships between arterial and urinary $P_CO_2}, P{O_2}$ and acid-base balances (동맥혈 및 뇨 $P_CO_2}, P{O_2}$ 의 산-염기 균형 및 뇨량과의 관계)

  • Kim, Yong-Jin;Lee, Yeong-Gyun
    • Journal of Chest Surgery
    • /
    • v.16 no.2
    • /
    • pp.213-220
    • /
    • 1983
  • Pulmonary function is the determinant of blood gas tension. However, Acid-Base disturbances can also alter partial pressures of oxygen and carbon dioxide in arterial blood. During respiratory acidosis $PO_2$ will be lowered and reverse changes will be produced during respiratory alkalosis. On the other hand, in metabolic acidosis $PO_2$ will be elevated and $PCO_2$ will be lowered by the respiratory compensation, and reverse response will be induced in metabolic alkalosis. Urinary gas tension has many influencing factors than arterial blood and difficult to estimate the tendency of its alterations. Urinary $PO_2$ and $PCO_2$ are not always identical level as venous blood. It is to be altered by blood gas tension, flow rate of urine, metabolic rate of kidney, and Acid-Base status of blood. Particularly countercurrent exchange of oxygen and carbon dioxide in the renal medulla will make larger alteration of gas tension than venous blood. After induction of Acid-Base disturbances [disturbances] arterial and urinary $PCO_2$, $PO_2$, urinary volume, and osmolarity were determined in dogs, and the relationships between arterial and urinary $PCO_2$ , $PO_2$ Acid-Base disturbances, urinary volume, and osmolarity were investigated. 1. During the acute Metabolic and Respiratory disturbances urinary pH did not respond on respiratory origin. However, there were immediate urinary response in pH on metabolic origin. 2. Urinary $PO_2$, $PCO_2$, did not always follow arterial or venous gas tension and Acid-Base disturbance. Urinary $PCO_2$, correlate well with the urinary volume. The larger the urinary volume, $PCO_2$ lowered to the venous level. The smaller the urinary volume, urinary $PCO_2$ tends to be higher. However urinary $PO_2$ did not have any particular correlation with urinary volume. 3. Correlation between urinary $PCO_2$ and $PO_2$ were inversely proportional to arterial blood. Differences of $PCO_2$ between arterial blood and urine also did not have any particular correlation with urinary volume. This may suggest that changes on blood gas tensions can influence on urinary $PCO_2$. 4. There were eminent clear inverse correlation between urinary $PCO_2$ and osmolar concentrations of urine. Above results strongly suggest that partial pressure of gas in urine primarily depend upon counter-current exchanges in renal medullary tissues.

  • PDF

Effects of Elevated Carbon Dioxide on the Fruiting Initiation and Development of Grifola frondosa (이산화탄소가 잎새버섯의 자실체 발생 및 생육에 미치는 영향)

  • Chi, Jeong-Hyun;Kim, Jeong-Han;Ju, Young-Cheoul;Seo, Geon-Sik;Kang, Hee-Wan
    • The Korean Journal of Mycology
    • /
    • v.37 no.1
    • /
    • pp.60-64
    • /
    • 2009
  • Effects of $CO_2$ concentration (500, 800, 1,000 and 1,500 ppm) on the initiation and development of fruit body of Grifola frondosa on sawdust cultivation were studied. Optimum concentrations of carbon dioxide for the initiation and development of the fruit body showed the ranges from 500 to 800 ppm. Fruit body initiation was accelerated at lower than 800 ppm $CO_2$ exposure but the maturing of the fruit body was not influenced by above treated $CO_2$ concentrations. The higher ratio of primordial formation, faster fruit body initiation and higher yield were obtained at below 800 ppm of $CO_2$ level, whereas over 1,000 ppm of $CO_2$ levels showed abnormal and lower quality of fruiting bodies. Based on the above results, it is concluded that the favorable $CO_2$ level for bag culture of G. frondosa was below 800 ppm.

[ $CO_2$ ] Sequestration in Geological Structures in the Maritime Area: A Preliminary Review (이산화탄소 해저 지질 구조 격리: 기술 현황과 제도 예비검토)

  • Hong, Gi-Hoon;Park, Chan-Ho;Kim, Han-Joon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.4
    • /
    • pp.203-212
    • /
    • 2005
  • Anthropogenic emissions of greenhouse gases, particularly carbon dioxide($CO_2$) which arises mainly as wastes from the fossil fuel burning processes, are causing global warming. The effects of global warming become increasingly felt all over the world including sea level rise and extreme weather. The more direct consequences of the elevated atmospheric $CO_2$ on the ocean is the acidification of the surface ocean which brings a far reaching adverse impact on the life at sea and probably on the whole ecosystem of the planet. Improvement in energy efficiency and use of alternative energy sources are being made to reduce $CO_2$ emissions. However, a rapid transition to alternatives seems unachievable within a few decades due to the constraints on the associated technology and socio-economic factors in the world, since fossil fuels make up approximately 85% of the world's commercial energy demands. It has now been recognized that capture and geological sequestration of $CO_2$ could significantly reduce its emissions from fossil fuel utilization and therefore provides the means to rapidly achieve large reductions in $CO_2$ emissions(excerpts from London Convention, LC/SG 28, 2005). In Korea, well-developed sedimentary basins are spread over the vast continental shelf and slope regions, whereas, the land is densely populated and limited in area. Consequently, the offshore area is preferred to the land for the sites for geological sequestration. The utilization of the offshore area, however, may be subject to international agreements including London Convention. In this paper, the recent trends in technologies and regulations for $CO_2$ capture and geological sequestration are described to encourage its applications in Korea.

  • PDF

Gasification Kinetics of an Indonesian Subbituminous Coal Char Reactivity with $CO_2$at Elevated Pressure (가압하에서 인도네시아 아역청탄촤의 $CO_2$ 가스화 반응성에 관한 실헙적 연구)

  • 안달홍;고경호;이종민;주용진;김종진
    • Journal of Energy Engineering
    • /
    • v.10 no.3
    • /
    • pp.206-213
    • /
    • 2001
  • Gasification kinetics of an Indonesian sub-bituminous coal-char with $CO_2$at elevated pressure was investigated with a pressurised drop tube furnace reactor. The effects of reaction temperature (900~140$0^{\circ}C$), partial pressure of carbon dioxide (0.1~0.5 MPa), and total system pressure (0.5, 0.7, 1.0, 1.5MPa) on gasification rate of the coal char with $CO_2$have been determined. It was found that the gasification rate was dependent on the total system pressure with the same partial pressure and temperature. The $n^{th}$ order rate equation (R=k $P^{g}$ $_{asn}$) was modified to be R=k $P^{g}$ $_{asn}$ $P^{m}$ $_{total}$ to describe the gasification rate where the total system pressure was changed. The gasification reaction rate of char-$CO_2$at high temperature and elevated pressure may be expressed as dX/dt=(174.1)exp(-71.5/RT)( $P_{CO2}$)0.40( $P_{total}$ )0.65(1-X)$^{2}$ 3/.X> 3/.

  • PDF

Reconstructing Atmospheric CO2 Concentration Using Its Relationship with Carbon Isotope Variations in Annual Tree Ring of Red Pine

  • Choi, Woo-Jung;Lee, Kye-Han;Lee, Sang-Mo;Lee, Seung-Heon;Kim, Han-Yong
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.4
    • /
    • pp.362-366
    • /
    • 2010
  • Carbon isotope ratio ($^{13}C/^{12}C$, expressed as ${\delta}^{13}C$) of tree ring can be proxy of atmospheric $CO_2$ concentration ([$CO_2$]) due to the inter-correlation between atmospheric [$CO_2$], ${\delta}^{13}C$ of atmospheric $CO_2$, and ${\delta}^{13}C$ of plant tissue that assimilates atmospheric $CO_2$. This study was conducted to investigate if ${\delta}^{13}C$ of tree ring of Pinus densiflora in polluted area may show a lower value than that in unpolluted area and to explore the possibility of reconstructing atmospheric [$CO_2$] using its relationship with ${\delta}^{13}C$ of tree ring. During the period between 1999 and 2005, ${\delta}^{13}C$ of tree annual ring tended to decrease over time, and the ${\delta}^{13}C$ in polluted area (-27.2‰ in 2009 to -28.3‰ in 2005) was significantly (P<0.001) lower than that (-26.0‰ in 1999 to -27.1‰ in 2005) in unpolluted area. This reflects a greater emission of $CO_2$ depleted in $^{13}C$ in the polluted area. Atmospheric [$CO_2$] was significantly (P<0.01) correlated with ${\delta}^{13}C$ of tree ring in a linear fashion. Using the linear regression equation, atmospheric [$CO_2$] in the polluted area was estimated to range from 392.3 ppm in 1999 to 410.9 ppm in 2005, and these values were consistently higher than the national atmospheric [$CO_2$] monitored at the Anmyoundo meteorological station (from 370.7 ppm in 1999 to 387.2 ppm in 2005). Our study suggested that it is possible to reconstruct atmospheric [$CO_2$] in a certain area using the relationship between tree ring ${\delta}^{13}C$ and atmospheric [$CO_2$].

Complete Genome and Calcium Carbonate Precipitation of Alkaliphilic Bacillus sp. AK13 for Self-Healing Concrete

  • Jung, Yoonhee;Kim, Wonjae;Kim, Wook;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.404-416
    • /
    • 2020
  • Bacteria that are resistant to high temperatures and alkaline environments are essential for the biological repair of damaged concrete. Alkaliphilic and halotolerant Bacillus sp. AK13 was isolated from the rhizosphere of Miscanthus sacchariflorus. Unlike other tested Bacillus species, the AK13 strain grows at pH 13 and withstands 11% (w/v) NaCl. Growth of the AK13 strain at elevated pH without urea promoted calcium carbonate (CaCO3) formation. Irregular vaterite-like CaCO3 minerals that were tightly attached to cells were observed using field-emission scanning electron microscopy. Energy-dispersive X-ray spectrometry, confocal laser scanning microscopy, and X-ray diffraction analyses confirmed the presence of CaCO3 around the cell. Isotope ration mass spectrometry analysis confirmed that the majority of CO32- ions in the CaCO3 were produced by cellular respiration rather than being derived from atmospheric carbon dioxide. The minerals produced from calcium acetate-added growth medium formed smaller crystals than those formed in calcium lactate-added medium. Strain AK13 appears to heal cracks on mortar specimens when applied as a pelletized spore powder. Alkaliphilic Bacillus sp. AK13 is a promising candidate for self-healing agents in concrete.