DOI QR코드

DOI QR Code

Effects of Elevated Carbon Dioxide on the Fruiting Initiation and Development of Grifola frondosa

이산화탄소가 잎새버섯의 자실체 발생 및 생육에 미치는 영향

  • Chi, Jeong-Hyun (Graduate School of Biotechnology and Information Technology, Hankyong National University) ;
  • Kim, Jeong-Han (Mushroom Research Station, Gyeonggi Province ARES) ;
  • Ju, Young-Cheoul (Mushroom Research Station, Gyeonggi Province ARES) ;
  • Seo, Geon-Sik (Department of Industrial Crop, Korea National Agriculture College) ;
  • Kang, Hee-Wan (Graduate School of Biotechnology and Information Technology, Hankyong National University)
  • 지정현 (한경대학교 생물환경 정보통신전문대학원) ;
  • 김정한 (경기도농업기술원 버섯연구소) ;
  • 주영철 (경기도농업기술원 버섯연구소) ;
  • 서건식 (한국농업대학 특용작물학과) ;
  • 강희완 (한경대학교 생물환경 정보통신전문대학원)
  • Published : 2009.06.30

Abstract

Effects of $CO_2$ concentration (500, 800, 1,000 and 1,500 ppm) on the initiation and development of fruit body of Grifola frondosa on sawdust cultivation were studied. Optimum concentrations of carbon dioxide for the initiation and development of the fruit body showed the ranges from 500 to 800 ppm. Fruit body initiation was accelerated at lower than 800 ppm $CO_2$ exposure but the maturing of the fruit body was not influenced by above treated $CO_2$ concentrations. The higher ratio of primordial formation, faster fruit body initiation and higher yield were obtained at below 800 ppm of $CO_2$ level, whereas over 1,000 ppm of $CO_2$ levels showed abnormal and lower quality of fruiting bodies. Based on the above results, it is concluded that the favorable $CO_2$ level for bag culture of G. frondosa was below 800 ppm.

이산화탄소의 농도가 잎새버섯의 자실체 원기 발달과 생육에 미치는 영향을 조사한 결과 자실체 원기는 500과 800 ppm에서 각각 100, 96%가 자실체로 발달되었으나 1,000과 1,500 ppm에서는 각각 68, 63%만이 자실체로 발달하였다. 초발이 소요일수도 고농도의 이산화탄소 환경하에서는 늦어지는 경향이었으나 자실체 생육은 시험한 이산화탄소 범위내에서는 큰 차이가 없었다. 전체 재배일수는 500과 800 ppm에서 57일, 1,000 ppm에서 62일, 1,500 ppm에서 64일이 소요되었다. 1 kg 봉지 당 수확량은 500과 800 ppm에서 227 g, 1,000 ppm에서 191 g, 1,500 ppm에서 205 g으로 낮은 농도의 이산화탄소 조건에서 유의적으로 우수하였다. 자실체의 형태는 500과 800 ppm에서는 비교적 원형에 가까운 균일한 형태로 나타났으나, 1,000 ppm에서는 형태가 불균일하고, 1,500 ppm에서는 기형으로 성장하여 잎새버섯의 고품질 생산을 위해서는 800 ppm 이하로 생육하는 것이 바람직할 것으로 판단되었다.

Keywords

References

  1. 김정한, 원선이, 지정현, 주영철. 2006. 잎새버섯 균주선발 및 생리특성 연구. 경기도농업기술원 시험연구보고서. pp. 617-629.
  2. 김정한, 최종인, 지정현, 원선이, 서건식, 주영철. 2008. 잎새버섯 봉지재배에 적합한 배지조성 연구. 한국균학회지 36: 26-30. https://doi.org/10.4489/KJM.2008.36.1.026
  3. 정환채, 주현규. 1989. 잎새버섯 우량계통 육성과 인공재배법 개발. 농사시험연구논문집 31: 43-47.
  4. 古川久彦. 1992. きのこ學. 共立出版株式會社.
  5. 大森淸壽, 小出博志. 2006. キノコ栽培全科. pp. 97-109. 社團法人 農山漁村文化協會.
  6. Choi, H. S., Cho, H. Y., Yang, H. C., Ra, K. S. and Suh, H. J. 2001. Angiotensin I-converting enzyme inhibitor from Grifola frondosa. Food Res. Intl. 34: 177-182 https://doi.org/10.1016/S0963-9969(00)00149-6
  7. Fukushima, M., Ohashi, T., Fujiwara, Y., Sonoyama, K. and Nakano, M. 2001. Cholesterol-lowering effects of maitake (Grifola frondosa) fiber, shiitake(Lentinus edodes) fiber, and enokitake(Flammulina velutipes) fiber in rats. Soc. Exp. Biol.Med. 226: 758-765 https://doi.org/10.1177/153537020222600808
  8. Hintikka, V. and Korhonen, K. 1970. Effect of carbon dioxide on the growth of lignicolous and soil-inhabiting Hymenomycetes. Communicationes Instituti Forestalis Fenniae. 62(5): 1-29.
  9. Ingold, C. T. and Nawaz, M. 1967. Carbon dioxide and fruiting in Sphaerobolus. Ann. Bot. (N. S.) 31: 351-357. https://doi.org/10.1093/oxfordjournals.aob.a084144
  10. Kinugawa, K., Suzuki, A., Takamatsu, Y., Kato, M. and Tanaka, K. 1994. Effect of concentrated carbon dioxide on the fruiting of several cultivated basidiomycetes (II). Mycoscience 35: 345-352. https://doi.org/10.1007/BF02268504
  11. Kinugawa, K., Takamatsu, Y., Suzuki, A., Tanaka, K. and Kondo, N. 1986. Effect of concentrated carbon dioxide on the fruiting of several cultivated basidiomycetes. Trans. mycol. Soc. Japan 27: 327-340. (In Japanese.)
  12. Kodama, N., Murata, Y., Asakawa, A., Inui, A., Hayashi, M., Sakai, N. and Nanba, H. 2005. Maitake D-fraction enhances antitumor effects and reduces immunosuppression by mitomycin-C in tumor-bearing mice. Nutrition 21: 624-629 https://doi.org/10.1016/j.nut.2004.09.021
  13. Long, P. E. and Jacobs, L. 1974. Aseptic fruiting of the cultivated mushroom Agaricus bisporus. Trans. Br. Mycol. Soc. 63: 99-107. https://doi.org/10.1016/S0007-1536(74)80140-3
  14. Mau, J. H., Lin, H. C. and Song, S. F. 2002. Antioxidant properties of several specialty mushrooms. Food Res. Intl. 35: 519-526 https://doi.org/10.1016/S0963-9969(01)00150-8
  15. Nanba, H., Kodama, N. Schar, D. and Turner, D. 2000. Effects fo maitake(Grifola frondosa) glucan in HIV-infected patients. Mycoscience 41: 293-295 https://doi.org/10.1007/BF02463941
  16. Niederpruem, D. J. 1963. Role of carbon dioxide in the control of fruiting of Schizophyllum commune. J. of Bacteriol. 85: 1300-1308.
  17. Taber, W. A. 1966. Morphogenesis in basidiomycetes. In: "The Fungi," (ed. by Ainsworth, G. C. and Sussman, A. S.) Vol. 2, pp. 387-412. Academic Press, New York.
  18. Talpur, N. A., Echard, B. W., Fan, A. Y., Jaffari, O., Bagchi, D. and Preuss, H. G. 2002. Antihypertensive and metabolic effects of whole maitake mushroom powder and its fractions in two rat strains. Mol. Cell. Biochem. 237: 129-136. https://doi.org/10.1023/A:1016503804742
  19. Tschierpe, H. J. 1959. Der Einfluss von Kohlendioxyd auf die Fruchtkorperbildung und die Fruchtkorperform des Kulturchampignons. Mush. Sci. 4: 235-250.
  20. Tschierpe, H. J. and Sinden. 1964. Weitere Untersuchungen uer die Bedeutung von Kohlendioxyd fur die Fructifikation des Kulturchampignons, Agaricus campestris var. bisporus (L) Lge. Arch. Mikrobiol. 49: 405-425. https://doi.org/10.1007/BF00406860
  21. Wu, M. J., Cheng, T. L., Cheng, S. Y., Lian, T. W., Wang, L. Grifola frondosa in submerged culture. J. Agric. Food Chem. 54: 2906-2914. https://doi.org/10.1021/jf052893q

Cited by

  1. Effects of Aeration of Sawdust Cultivation Bags on Hyphal Growth ofLentinula edodes vol.40, pp.3, 2012, https://doi.org/10.5941/MYCO.2012.40.3.164
  2. Effect of brewers dried grain as a nutrient supplement in plastic vinyl bag cultivation of maitake (Grifola frondosa S. F. Gray) vol.14, pp.2, 2016, https://doi.org/10.14480/JM.2016.14.2.34