• Title/Summary/Keyword: Electronic learning

Search Result 1,348, Processing Time 0.026 seconds

Edge Computing Task Offloading of Internet of Vehicles Based on Improved MADDPG Algorithm

  • Ziyang Jin;Yijun Wang;Jingying Lv
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.327-347
    • /
    • 2024
  • Edge computing is frequently employed in the Internet of Vehicles, although the computation and communication capabilities of roadside units with edge servers are limited. As a result, to perform distributed machine learning on resource-limited MEC systems, resources have to be allocated sensibly. This paper presents an Improved MADDPG algorithm to overcome the current IoV concerns of high delay and limited offloading utility. Firstly, we employ the MADDPG algorithm for task offloading. Secondly, the edge server aggregates the updated model and modifies the aggregation model parameters to achieve optimal policy learning. Finally, the new approach is contrasted with current reinforcement learning techniques. The simulation results show that compared with MADDPG and MAA2C algorithms, our algorithm improves offloading utility by 2% and 9%, and reduces delay by 29.6%.

Prediction for Energy Demand Using 1D-CNN and Bidirectional LSTM in Internet of Energy (에너지인터넷에서 1D-CNN과 양방향 LSTM을 이용한 에너지 수요예측)

  • Jung, Ho Cheul;Sun, Young Ghyu;Lee, Donggu;Kim, Soo Hyun;Hwang, Yu Min;Sim, Issac;Oh, Sang Keun;Song, Seung-Ho;Kim, Jin Young
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.134-142
    • /
    • 2019
  • As the development of internet of energy (IoE) technologies and spread of various electronic devices have diversified patterns of energy consumption, the reliability of demand prediction has decreased, causing problems in optimization of power generation and stabilization of power supply. In this study, we propose a deep learning method, 1-Dimention-Convolution and Bidirectional Long Short-Term Memory (1D-ConvBLSTM), that combines a convolution neural network (CNN) and a Bidirectional Long Short-Term Memory(BLSTM) for highly reliable demand forecasting by effectively extracting the energy consumption pattern. In experimental results, the demand is predicted with the proposed deep learning method for various number of learning iterations and feature maps, and it is verified that the test data is predicted with a small number of iterations.

Region-based Q-learning for intelligent robot systems (지능형 로보트 시스템을 위한 영역기반 Q-learning)

  • Kim, Jae-Hyeon;Seo, Il-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.4
    • /
    • pp.350-356
    • /
    • 1997
  • It is desirable for autonomous robot systems to possess the ability to behave in a smooth and continuous fashion when interacting with an unknown environment. Although Q-learning requires a lot of memory and time to optimize a series of actions in a continuous state space, it may not be easy to apply the method to such a real environment. In this paper, for continuous state space applications, to solve problem and a triangular type Q-value model\ulcorner This sounds very ackward. What is it you want to solve about the Q-value model. Our learning method can estimate a current Q-value by its relationship with the neighboring states and has the ability to learn its actions similar to that of Q-learning. Thus, our method can enable robots to move smoothly in a real environment. To show the validity of our method, navigation comparison with Q-learning are given and visual tracking simulation results involving an 2-DOF SCARA robot are also presented.

  • PDF

Control for Manipulator of an Underwater Robot Using Meta Reinforcement Learning (메타강화학습을 이용한 수중로봇 매니퓰레이터 제어)

  • Moon, Ji-Youn;Moon, Jang-Hyuk;Bae, Sung-Hoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.95-100
    • /
    • 2021
  • This paper introduces model-based meta reinforcement learning as a control for the manipulator of an underwater construction robot. Model-based meta reinforcement learning updates the model fast using recent experience in a real application and transfers the model to model predictive control which computes control inputs of the manipulator to reach the target position. The simulation environment for model-based meta reinforcement learning is established using MuJoCo and Gazebo. The real environment of manipulator control for underwater construction robot is set to deal with model uncertainties.

Design of Block Codes for Distributed Learning in VR/AR Transmission

  • Seo-Hee Hwang;Si-Yeon Pak;Jin-Ho Chung;Daehwan Kim;Yongwan Kim
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.4
    • /
    • pp.300-305
    • /
    • 2023
  • Audience reactions in response to remote virtual performances must be compressed before being transmitted to the server. The server, which aggregates these data for group insights, requires a distribution code for the transfer. Recently, distributed learning algorithms such as federated learning have gained attention as alternatives that satisfy both the information security and efficiency requirements. In distributed learning, no individual user has access to complete information, and the objective is to achieve a learning effect similar to that achieved with the entire information. It is therefore important to distribute interdependent information among users and subsequently aggregate this information following training. In this paper, we present a new extension technique for minimal code that allows a new minimal code with a different length and Hamming weight to be generated through the product of any vector and a given minimal code. Thus, the proposed technique can generate minimal codes with previously unknown parameters. We also present a scenario wherein these combined methods can be applied.

EPS Gesture Signal Recognition using Deep Learning Model (심층 학습 모델을 이용한 EPS 동작 신호의 인식)

  • Lee, Yu ra;Kim, Soo Hyung;Kim, Young Chul;Na, In Seop
    • Smart Media Journal
    • /
    • v.5 no.3
    • /
    • pp.35-41
    • /
    • 2016
  • In this paper, we propose hand-gesture signal recognition based on EPS(Electronic Potential Sensor) using Deep learning model. Extracted signals which from Electronic field based sensor, EPS have much of the noise, so it must remove in pre-processing. After the noise are removed with filter using frequency feature, the signals are reconstructed with dimensional transformation to overcome limit which have just one-dimension feature with voltage value for using convolution operation. Then, the reconstructed signal data is finally classified and recognized using multiple learning layers model based on deep learning. Since the statistical model based on probability is sensitive to initial parameters, the result can change after training in modeling phase. Deep learning model can overcome this problem because of several layers in training phase. In experiment, we used two different deep learning structures, Convolutional neural networks and Recurrent Neural Network and compared with statistical model algorithm with four kinds of gestures. The recognition result of method using convolutional neural network is better than other algorithms in EPS gesture signal recognition.

Generation of optical fringe patterns using deep learning (딥러닝을 이용한 광학적 프린지 패턴의 생성)

  • Kang, Ji-Won;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1588-1594
    • /
    • 2020
  • In this paper, we discuss a data balancing method for learning a neural network that generates digital holograms using a deep neural network (DNN). Deep neural networks are based on deep learning (DL) technology and use a generative adversarial network (GAN) series. The fringe pattern, which is the basic unit of a hologram to be created through a deep neural network, has very different data types depending on the hologram plane and the position of the object. However, because the criteria for classifying the data are not clear, an imbalance in the training data may occur. The imbalance of learning data acts as a factor of instability in learning. Therefore, it presents a method for classifying and balancing data for which the classification criteria are not clear. And it shows that learning is stabilized through this.

Pruning and Learning Fuzzy Rule-Based Classifier

  • Kim, Do-Wan;Park, Jin-Bae;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.663-667
    • /
    • 2004
  • This paper presents new pruning and learning methods for the fuzzy rule-based classifier. The structure of the proposed classifier is framed from the fuzzy sets in the premise part of the rule and the Bayesian classifier in the consequent part. For the simplicity of the model structure, the unnecessary features for each fuzzy rule are eliminated through the iterative pruning algorithm. The quality of the feature is measured by the proposed correctness method, which is defined as the ratio of the fuzzy values for a set of the feature values on the decision region to one for all feature values. For the improvement of the classification performance, the parameters of the proposed classifier are finely adjusted by using the gradient descent method so that the misclassified feature vectors are correctly re-categorized. The cost function is determined as the squared-error between the classifier output for the correct class and the sum of the maximum output for the rest and a positive scalar. Then, the learning rules are derived from forming the gradient. Finally, the fuzzy rule-based classifier is tested on two data sets and is found to demonstrate an excellent performance.

  • PDF

Comparison of Audio Event Detection Performance using DNN (DNN을 이용한 오디오 이벤트 검출 성능 비교)

  • Chung, Suk-Hwan;Chung, Yong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.3
    • /
    • pp.571-578
    • /
    • 2018
  • Recently, deep learning techniques have shown superior performance in various kinds of pattern recognition. However, there have been some arguments whether the DNN performs better than the conventional machine learning techniques when classification experiments are done using a small amount of training data. In this study, we compared the performance of the conventional GMM and SVM with DNN, a kind of deep learning techniques, in audio event detection. When tested on the same data, DNN has shown superior overall performance but SVM was better than DNN in segment-based F-score.

Usability Analysis of Algorithm Visualization Tool for Learning Basic Algorithms (기초 알고리즘 학습을 위한 알고리즘 시각화 시스템의 효용성 분석)

  • Oh, Kyeong-Sug;Lee, Sang-Jin;Kim, Eung-Kon;Park, Kyoung-Wook;Ryu, Nam-Hoon;Lee, Hye-Mi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.2
    • /
    • pp.212-218
    • /
    • 2011
  • The curriculum of programming education including algorithm has been recognized as a very important subject to many students majoring in natural sciences and engineering including electronic engineering and computer related departments. This study analyzed usability of the learning system of programming languages using basic algorithms so as for students to easily learn basic algorithm among the entire programming curriculum. The results show that the grade of learning achievement of experimental group using the learning system is 15 points higher than that of non-experimental group and the grade of interest, concentration, effectiveness, understanding, convenience, suitability, and attending a lecture in the next semester are 4 points or more of 5 points criterion.