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Abstract

Audience reactions in response to remote virtual performances must be compressed before being transmitted to the server. The

server, which aggregates these data for group insights, requires a distribution code for the transfer. Recently, distributed learning

algorithms such as federated learning have gained attention as alternatives that satisfy both the information security and

efficiency requirements. In distributed learning, no individual user has access to complete information, and the objective is to

achieve a learning effect similar to that achieved with the entire information. It is therefore important to distribute

interdependent information among users and subsequently aggregate this information following training. In this paper, we

present a new extension technique for minimal code that allows a new minimal code with a different length and Hamming

weight to be generated through the product of any vector and a given minimal code. Thus, the proposed technique can generate

minimal codes with previously unknown parameters. We also present a scenario wherein these combined methods can be

applied.

Index Terms: Blockchain, Distributed Learning, Federated Learning, VR/AR transmission, Virtual performances

I. INTRODUCTION

When the reactions of an audience watching a remote vir-

tual performance are to be transmitted to a server, the data

must be sufficiently compressed in such a way that it can be

easily restored on the server. In such scenarios, the server

must aggregate data from remote viewers and learn group-

level reactions or movements that encompass the whole

body, actions, and facial expressions. Furthermore, the trans-

mission of this information requires distribution codes,

necessitating distributed coding. Distributed learning algo-

rithms, such as federated learning, have recently gained

attention as alternatives that satisfy both information security

and efficiency requirements [1,2]. In distributed learning, no

individual user has access to complete information, with the

objective being to achieve a learning effect similar to that

when learning with the entire information. It is therefore

important to distribute interdependent information among

users and subsequently aggregate this information following

training.

Minimal code is a type of linear block code [3] used in

various applications such as secret-sharing schemes. In a

secret sharing scheme, confidential information is distributed

and stored among users so that only a specific authorized
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subset of users can reconstruct all of it [4].

The distribution of these secrets can be mathematically

defined using minimal code. The most important characteris-

tic of such code is that the code word of one user must not

be dependent on that of another; i.e., the support of one code

word should not be a subset of that of another. Algebraic

design methods that satisfy this requirement have previously

been proposed [5-8]. Minimal code is expected to become

applicable not only in federated learning, but other fields

where information dispersion is required, such as blockchain

technology. Furthermore, the design of new minimal code

techniques is considered an interesting topic in the field of

coding theory. 

In [5], Aschikhmin and Barg proposed sufficient condi-

tions for a linear block code to be minimal, and presented a

method for minimum distance decoding. Mesnager et al.

introduced methods for designing minimal codes using char-

acteristic functions defined in finite fields [8]. Various mini-

mal codes have also been designed under the conditions

defined by Aschikhmin and Barg [9-11]. Chang and Hyun

discovered a design method for minimal codes that is not

restricted by sufficient conditions [12]. Ding et al. not only

derived the conditions for minimality in binary codes, but

also designed a class of infinite binary minimal codes [6].

Heng et al. discovered various binary and ternary minimal

codes [13]. Bartoli and Bonini proposed a generalized design

method and an inductive extension method for non-binary

minimal codes [14]. Most existing minimal codes were

designed based on the structures and properties of finite

fields, making them limited in length. Instead, it is desirable

to design minimal code with new parameters that can accom-

modate various information lengths and communication

environments.

In this paper, we present a new extension technique for

block codes for VR/AR transmissions. We briefly examined

existing design methods to derive combination methods for

new codes. Using our technique, a minimal code with a new

length and Hamming weight can be generated through the

product of any vector and existing minimal code, thereby

yielding minimal codes with previously unknown parame-

ters. We also analyzed the weight properties of the new

codes and compared them with those of previously designed

codes.

The remainder of this paper is organized as follows. In

Section II, we provide an overview of background knowl-

edge pertaining to minimal codes. In Section III, we present

a design method based on a combination of distinct minimal

codes, and examine properties associated with the weight

distribution and minimum distances of the new minimal

codes. In Section IV, we introduce scenarios in which the

designed minimal codes can be applied, and subsequently

present concluding remarks.

II. BACKGROUND

A finite field is a type of field that is distinct from a set of

real numbers because it consists of a finite elements [15].

Many block codes have been designed over finite fields, as

these fields are suitable for basic arithmetic operations. In

the following subsections, we introduce the definitions and

concepts of finite fields, linear codes, and minimal codes.

A. Mathematical Definitions of Finite Fields, Linear 
Block Codes, and Minimal Codes

A finite field comprises pm elements, where p is a prime

number and m is a positive integer. The field is equipped

with two operations – addition and multiplication – and

composed of an additive identity element 0 and a cyclic

group under multiplication [9]. This cyclic group consists of

powers of the primitive element α, denoted as 1=α0, α, α2,

..., . A finite field represents a commutative group

under addition, where all elements except 0 form cyclic

groups under multiplication. The finite field GF(pm). can

also be interpreted as an m-dimensional vector space over

GF(p). Information regarding error-correcting codes and the

design of Boolean functions using finite fields can be found

in [10].

In the finite field , a linear block code C of length N is

defined as the K-dimensional subspace of an N-dimensional

vector space. The (N,K)-linear block code C is represented

by a set of vectors:

(1)

In this representation, each vector xᵢ, where 0 ≤ i ≤ M−1, is

called a codeword. M represents the number of distinct code-

words, which corresponds to the number of users. K, which

represents the length of the informative section, is equivalent

to the number of independent vector components. Code-

words are generated by the multiplication of K information

vectors by a K×N matrix. Each element of a vector can be

represented as follows:

(2)

According to the properties of linear codes, the sum of two

codewords  becomes another codeword  that

belongs to C. Moreover, for any element , the scalar

multiplication  also yields another codeword  belong-

ing to C. The support of codeword  is defined by the fol-

lowing set:

(3)

This support represents a set of coordinates that have non-

zero values. The Hamming weight of the codeword  is

defined as the size of the support set of . If the support of
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any codeword  in the (N,K)-linear block code C is not a

subset of the support of another codeword , then C is

referred to as the (N,K)-minimal code. As shown in Fig. 1,

the supports of any two distinct words in a minimal code are

mutually exclusive. In such cases, there always exists a posi-

tion where  is nonzero and  is zero, and vice versa.

B. Backgrounds on Minimal Codes

The concept of a minimal code and its application to

secret sharing schemes were first proposed by Massey [3].

Ashikhmin and Barg subsequently analyzed the relationship

between minimal codes and existing error-correcting codes,

obtined the significant properties of minimal codes, such as

weight distribution, and explored various aspects related to

minimal codes [4]. Furthermore, they derived the sufficient

conditions for a linear block code to be minimal, as stated in

the following theorem:

Theorem 1 [4]. If a linear block code C over the finite

field  satisfies the following condition, then C is a mini-

mal code:

(4)

where wmin and wmax are the minimum and maximum sup-

port sizes among all codewords in C, respectively.

Although Theorem 1 can serve as an important guideline

for designing minimal code, it imposes limitations on the

range of Hamming weights among code words, restricting

the information capacity to a specific range.

To address this limitation, non-binary minimal codes, as

well as binary minimal codes that are not restricted by the

conditions of Theorem 1, were proposed by Ding et al. [6].

Furthermore, Mesnager et al. introduced integrated approaches

for designing minimal codes, encompassing both binary and

non-binary codes that fall outside the scope of Theorem 1

[8]. In this context, codes with an alphabet size of two are

referred to as binary, whereas those with a larger alphabet

are referred to as non-binary. The design of binary and non-

binary distribution codes is an important topic, as although

the design schemes are similar, their applications are consid-

erably different.

III. DESIGN AND APPLICATION OF DISTRIBUTION 

CODES

A. New Minimal Codes

1) Extension Methods for New Minimal Codes

For 0 ≤ n ≤ N−1, we define an arbitrary nonzero vector in

, with a length k ≥ 2, as =(ra(0), ra(1), ..., ra(k−1)).

Theorem 2 presents a new minimal code for length kN.

Theorem 2. Let us define codeword  of length kn as fol-

lows:

(4)

where 0≤n≤N−1 and 0 ≤ b ≤ l−1. The new code E = { ,

, ..., } is a (kN,K)-minimal code.

Proof: First, we prove that E is a linear code. For any two

integers i and j between 0 and M−1, the summation 

(5)

becomes yk[a,b] by the linearity of the original codewords.

Furthermore, 

(6)

for some l. Therefore, E is linear. Next, we prove the mini-

mality of E. Because  is a nonzero vector,

(7)

and there exists 0 ≤ b ≤ l−1 such that

(8)

Therefore, the support of codeword  is not a subset of the

support of codeword . We can similarly show that the sup-

port for  is not a subset of that for . Therefore, E is a

minimal code. ■

In Theorem 2, each codeword  can be expressed as the

concatenation of vectors obtained by multiplying each ele-

ment of the original codeword  by corresponding constants

from . Fig. 2 illustrates this extension method for minimal

codes.

2) Weight Properties of New Minimal Code

The weight distribution of the new code E is determined

by the weight distributions of the individual vectors  and

the original code C. In the simplest case, when the Hamming

weight of each  is fixed to 1, the weight distribution of E

will match that of C. Moreover, the maximum Hamming
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Fig. 1. Three codewords within a minimal code

Fig. 2. Extension method for minimal codes
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weight of  is equal to the length l. When all  have a

fixed weight of l, each weight value in the original distribu-

tion is multiplied by l. Because the Hamming weight of each

 can be arbitrarily selected between 1 and l, various

weight distributions can be obtained depending on the varia-

tion in the Hamming weights of  with respect to α. In

addition, it is evident that extending a code beyond the con-

straints of Theorem 1 enables the generation of a new code

beyond those constraints.

In linear codes, the minimum distance – which represents

the distance between code words – is an important perfor-

mance metric associated with error probability. Owing to lin-

earity, the minimum distance is equal to the minimum

Hamming weight among the code words [3]. Assuming that

the original minimum distance of the minimal code C is

denoted as d, the minimum distance of the new code E can

be observed to range from d to ld with respect to . There-

fore, the ratio between the length and minimum distance is

maintained as the length is extended. Table 1 provides exam-

ples of the lengths, weights, and minimum distances of

extended codes.

B. Extended Minimal Binary Codes

1) Double Extension of Binary Minimal Codes

Let us define the extended length 2N codeword  as fol-

lows:

(9)

where i = 1, 2, ..., M. We now can define the extended code

Y as follows:

(10)

Here, Y has a length of 2N and contains M code words,

which can be easily generated by combining original code

words with their reverse-indexed counterparts. The original

codewords , ...,  hold true mutual linearity, whereas

each of the new codewords , ...,  holds true linearity

for odd and even indices. Therefore, the set of new code

words in Y satisfies linearity. Furthermore, based on the

properties of the original code C, the codewords in Y and

their supports can be inferred to be mutually independent.

2) Interleaved Extension of Binary Minimal Codes

Our code construction is based on the interleaving of two

different minimal codes, with the indices of a new code

determined by a combination of the two codes. Consider a

minimal code C1 with a length of N1 that contains M1

codewords denoted as , ..., , and a minimal code C2

with a length of N2 that contains M2 codewords denoted as

, ..., . The new code word  can be defined as

(11)

where ⊙ is the binary AND operator, 0 ≤ i ≤ M1, 0 ≤ i ≤ M2,

and 0 ≤ t ≤ N1N2−1. Furthermore, t1 = t mod N1 and t2 = t

mod N2. Consequently, the value of  can be 1 for the

number of t values that equals the product of the Hamming

weights of  and . Furthermore, it is possible to gener-

ate  for all combinations of i and j. Define the new code

Z as follows:

(12)

The codewords of Z inherit properties of the original code

depending on the values of t1 and t2, indicating that the sup-

port of the different codewords remains independent. More-

over, as linearity holds for t1 and t2 separately, and N1 and N2

are relatively prime, linearity also holds with respect to t.

The number of codewords in Z is M1M2, and the Hamming

weight of each codeword is equal to the product of the Ham-

ming weights of the two constituent codes. Finding two rela-

tively prime lengths is another challenging problem, as most

known binary minimal codes have lengths in the form of

pm − 1.

C. Application of Minimal Codes

The newly designed code is fundamentally determined by

the weight distribution of the original code. However, by

altering the combinations of the constituent codes, new

weight distributions can be generated, as discussed in

III.B.1. Table 2 presents the experimentally obtained weight

distributions for each combination.

As seen from the table, codes with a wider range of weight

distributions can be synthesized by combining existing

codes. This enables a greater variety of information combi-

nations, increasing the diversity of dispersed information.

The newly designed code from III.B.1 can be utilized to
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Table 1. Sample new parameters of minimal codes (N: length, K:

information length, d: minimum distance)

N K d
Number of 

distinct weights

Original Codes 511 10 120 3

Extended Codes 5110 10 120~1200 3~30

Table 2. Weight distributions of a sample original code and its extension

Code Lengths No. of Possible Weights

Original 255 6

Extended 510 12
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combine information from two distributed learning systems

into a single entity. The dispersed forms of information from

each system can be incorporated into existing code words

without modification. Moreover, because the new codewords

remain mutually independent, confidentiality is maintained

in a dispersed formIf the codes with relatively prime lengths

presented in III.B.2 are not used, finding a method to com-

bine data from the two systems becomes an additional chal-

lenge.

IV. CONCLUSIONS

 In this study, we propose a method that extends minimal

codes to an arbitrary multiple length by increasing the Ham-

ming weight. Furthermore, we demonstrated an increase in

the minimum distance of the code; thus, a new Hamming

weight distribution can be generated through various combi-

nations. Our extension method can be applied to codes with

new designs that can accommodate various parameters.
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