Abstract
It is desirable for autonomous robot systems to possess the ability to behave in a smooth and continuous fashion when interacting with an unknown environment. Although Q-learning requires a lot of memory and time to optimize a series of actions in a continuous state space, it may not be easy to apply the method to such a real environment. In this paper, for continuous state space applications, to solve problem and a triangular type Q-value model\ulcorner This sounds very ackward. What is it you want to solve about the Q-value model. Our learning method can estimate a current Q-value by its relationship with the neighboring states and has the ability to learn its actions similar to that of Q-learning. Thus, our method can enable robots to move smoothly in a real environment. To show the validity of our method, navigation comparison with Q-learning are given and visual tracking simulation results involving an 2-DOF SCARA robot are also presented.