• Title/Summary/Keyword: Electronic Control

Search Result 7,294, Processing Time 0.032 seconds

Adaptive Backstepping Hovering Control for a Quadrotor with Unknown Parameters (미지 파라미터를 갖는 쿼드로터의 적응 백스테핑 호버링 제어)

  • Lee, Keun Uk;Park, Jin Bae;Choi, Yoon Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1002-1007
    • /
    • 2014
  • This paper deals with the adaptive backstepping hovering control for a quadrotor with model parameter uncertainties. In this paper, the backstepping based technique is utilized to design a nonlinear adaptive controller which can compensate for the motor thrust factor and the drag coefficient of a quadrotor. First, the quadrotor nonlinear dynamics is derived using Newton-Euler formulation. In particular, we use the ${\pi}/4$ shifted coordinate for x- and y-axis of a quadrotor. Second, an adaptive backstepping based attitude and altitude tracking control method is presented. The system stability and the convergence of tracking errors are proven using the Lyapunov stability theory. Finally, the simulation results are given to verify the effectiveness of the proposed control method.

Sliding Mode Control with the feedback linearization and novel sliding surface for induction motors (새로운 슬라이딩 평면과 궤환 선형화를 이용한 유도 전동기의 슬라이딩 모드 제어)

  • Park, Seung-Kyu;Ahn, Ho-Kyun;Kim, Hyung-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2672-2674
    • /
    • 2000
  • In this paper. feedback linearization and the sliding mode control(SMC) are used together for uncertain nonlinear system. An advantage of feedback linearization technique is to make linear control theories can be used for nonlinear system and the SMC have the robustness. But the dynamics of the SMC has the dynamics lower order than that of the original system. Therefore the linear control theory can not be used with the SMC. The novel sliding surface of the SMC can have the dynamics of the nominal non linear system controlled by the feedback linearization. The proposed method can be used for the control of induction motors.

  • PDF

Control and Synchronization of New Hyperchaotic System using Active Backstepping Design

  • Yu, Sung-Hun;Hyun, Chang-Ho;Park, Mi-Gnon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.2
    • /
    • pp.77-83
    • /
    • 2011
  • In this paper, an active backstepping design is proposed to achieve control and synchronization of a new hyperchaotic system. The proposed method is a systematic design approach and exists in a recursive procedure that interlaces the choice of a Lyapunov function with the design of the active control. The proposed controller enables stabilization of chaotic motion to the origin as well as synchronization of the two identical new hyperchaotic systems. Numerical simulations illustrate the validity of the proposed control technique.

Suggestion of Multi-Electrode Type Electronic Paper Film to Can be Used as a Transparent Display (투명 디스플레이로써 활용 가능한 다수전극형 전자종이 필름 제안)

  • Lee, Sang-il;Hong, Youn-Chan;Kim, Young-cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.4
    • /
    • pp.296-301
    • /
    • 2019
  • A multiple-electrode-type electronic paper film can implement a single color and control the transparency, as it has multiple electrodes in one cell. Therefore, it can be used as a transparent display. In this paper, we explain the structure and driving method of a transparent electronic paper display, and then propose a control method of transmittance. Subsequently, we verify the theory by measuring the transmittance via experiment. Thus, by changing the manner of applying the voltage to three lower electrodes and one upper electrode, transmittance in eight cases could be realized. It was confirmed that the transmittance derived from the experiment could be controlled from a minimum of 6.75% to a maximum of 71.18%.

Electrode Characteristics of Non-contact Electrocardiographic Measurement

  • Mathias, Dakurah Naangmenkpeong;Kim, Sung-Il;Park, Jae-Soon;Joung, Yeun-Ho;Choi, Won Seok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.42-45
    • /
    • 2015
  • The ability to take electrocardiographic measurements while performing our daily activities has become the people-choice for modern age vital sign sensing. Currently, wet and dry ECG electrodes are known to pose threats like inflammations, allergic reactions, and metal poisoning due to their direct skin interaction. Therefore, the main goal in this work is to implement a very small ECG sensor system with a capacitive coupling, which is able to detect electrical signals of heart at a distance without the conductive gel. The aim of this paper is to design, implement, and characterize the contactless ECG electrodes. Under a careful consideration of factors that affect a capacitive electrode functional integrity, several different sizes of ECG electrodes were designed and tested with a pilot ECG device. A very small cotton-insulated copper tape electrode ($2.324cm^2$) was finally attained that could detect and measure bioelectric signal at about 500 um of distance from the subject's chest.

Real Time ECG Monitoring Through a Wearable Smart T-shirt

  • Mathias, Dakurah Naangmenkpeong;Kim, Sung-Il;Park, Jae-Soon;Joung, Yeun-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.16-19
    • /
    • 2015
  • A wearable sensing ECG T-shirt for ubiquitous vital signs sensing is proposed. The sensor system consists of a signal processing board and capacitive sensing electrodes which together enable measurement of an electrocardiogram (ECG) on the human chest with minimal discomfort. The capacitive sensing method was employed to prevent direct ECG measurement on the skin and also to provide maximum convenience to the user. Also, low power integrated circuits (ICs) and passive electrodes were employed in this research to reduce the power consumption of the entire system. Small flexible electrodes were placed into cotton pockets and affixed to the interior of a worn tight NIKE Pro combat T-shirt. Appropriate signal conditioning and processing were implemented to remove motion artifacts. The entire system was portable and consumed low power compared to conventional ECG devices. The ECG signal obtained from a 24 yr. old male was comparable to that of an ECG simulator.

Structural properties and field-emission characteristics of CNTs grown on Ni and Invar catalysts employing an ICP-CVD method (ICP-CVD 방법을 이용하여 Ni 및 Invar 촉매 위에 성장시킨 탄소나노튜브의 구조적 물성 및 전계방출 특성)

  • Hong, Seong-Tae;Kim, Jong-Pil;Park, Chang-Kyun;Uhm, Hyun-Seok;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1597-1599
    • /
    • 2004
  • Carbon nanotubes (CNTs) are grown on the TiN-coated silicon substrate by varying the thickness of Ni and Invar426 catalyst layers at 600$^{\circ}C$ using an inductively coupled plasma-chemical vapor deposition (ICP-CVD). The Ni and Invar426 catalysts are formed using an RF magnetron sputtering system with various deposition periods. Characterization using various techniques, such as FESEM, HRTEM, and Raman spectroscopy, shows that the physical dimension as well as the crystal quality of grown CNTs are strongly changed by the kind and thickness of catalyst materials. It is also seen that Ni catalysts would be more desirable for vertical-alignment of CNTs compared with Invar426 catalysts. However, the CNTs using Invar426 catalysts display much better electron emission capabilities than those using Ni catalysts. The physical reason for all the measured data obtained are discussed to establish the relationship between structural properties and field-emissive properties of CNTs.

  • PDF

Fabrication of a FBAR device using a novel process and the effect of bottom electrode on the frequency response (신 공정을 이용한 멤브레인형 체적탄성파 공진기의 제작 및 하부전극이 주파수 응답특성에 미치는 영향)

  • Kim, Bo-Hyun;Kim, Do-Young;Cho, Dong-Hyun;Lee, Jin-Bock;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1594-1596
    • /
    • 2004
  • Film bulk acoustic resonator (FBAR) devices which adopt a membrane-type configuration are fabricated by a novel process. In contrast to the conventional FBAR structure, the newly fabricated resonator doesn't employ any supporting layer below or above it, so that the properties of piezoelectric layer are not influenced by the bottom electrode material. FBAR devices with Mo/AlN/Metal configuration are also fabricated. The frequency response characteristics ($S_{11}$) of the devices fabricated using the proposed process are compared with those of the conventional devices. The return losses are also estimated, in terms of the kind and thickness of bottom electrode materials.

  • PDF

A Voltage Control Method based on Constants of Four Terminals Network Modeling of Distribution Networks

  • Yang, Xia;Lim, Il-Hyung;Choi, Myeon-Song;Lee, Seung-Jae;Kim, Tae-Wan
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.354-362
    • /
    • 2008
  • In this paper, a new algorithm of optimal voltage control is proposed for the Distribution Automation System (DAS) based on constants of four terminal network modeling. In the proposed method, the voltage profiles along feeders are estimated from the measurement of the current and power factor by a Feeder Remote Terminal Unit (FRTU) installed at each node. Whenever the voltage profile violates the restriction, the voltage control strategy is applied to keep the voltage levels along the feeders within the pre-specified range through the modification and coordination of the transformer under-load tap changers (ULTC), step voltage regulator (SVR), as well as shunt condenser. In the case studies, the estimation and control of the voltages have been testified in a radial distribution system with 11 nodes.

Improving the Performance of Hot Rolling Process through Cross Control (Cross Control 기법을 통한 열연 공정의 성능 개선)

  • Jung, Jae-Kyung;Park, Ju-Hyun;Shim, Woo-Chul;Kwon, Oh-Min;Won, Sang-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.561-563
    • /
    • 1999
  • The looper of a hot strip finishing mill is installed between each pair of stands and plays a key role to enhance the product quality of strip by controlling the tension and height of strip in each inter-stand. Though the conventional looper control has achieved the mass products of strip so far, it has difficulties not only tuning gains by means of errors which are caused by coupling effects between strip tension and looper angle both utilizing tension feedback. Therefore, the non-interactive control employing cross controller and tension feedback has been introduced in looper control system in order to overcome the coupling effects existing between tension and looper angle and track the reference tension efficiently. In this paper, we present the cross controllers which play a role to decouple reciprocal effects between tension and looper angle and show better performance.

  • PDF