References
- E. Ott, C. Grebogi and J.A. Yorke, "Controlling chaos, " Phys. Rev. Lett., vol. 64, pp. 1196-1199, 1990. https://doi.org/10.1103/PhysRevLett.64.1196
- L.M. Pecora and T.L. Carroll, "Synchronization in chaotic systems," Phys. Rev. Lett., vol. 64, pp. 821-824, 1990. https://doi.org/10.1103/PhysRevLett.64.821
- G. Perez and H.A. Cerdeira, "Extracting messages masked by chaos," Phys. Rev. Lett., vol. 74 pp. 1970-1973, 1995. https://doi.org/10.1103/PhysRevLett.74.1970
- L. Pecora, "Hyperchaos harnessed," World, vol. 9, pp. 17-18, 1996.
- T.L. Liao and S.H. Tsai, "Adaptive synchronization of chaotic systems and its application to secure communications," Chaos, Solitons & Fractals, vol. 11, pp. 1387-1396, 2000. https://doi.org/10.1016/S0960-0779(99)00051-X
- S. Sarasola, F.J. Torredea and A. D'anjou, "Feed-back synchronization of chaotic systems," Int. J. Bifurc. Chaos, vol. 13, pp. 177-191, 2003. https://doi.org/10.1142/S0218127403006443
- X. Liao, "Chaos synchronization of general Lur'e systems via time-delay feed-back control," Int. J. Bifurc. Chaos, vol. 13, pp. 207-213, 2003. https://doi.org/10.1142/S0218127403006455
- A. N. Njah and O. D. Sunday, "Synchronization of Identical and Non-identical 4-D Chaotic Systems via Lyapunov Direct Method," Chaos, International Journal of Nonlinear Science, vol. 8, pp. 3-10, 2009.
- E.W. Bai and K.E. Lonngren, "Synchronization of two Lorenz systems using active control," Chaos, Solitons & Fractals, vol. 8, pp. 51-58, 1997. https://doi.org/10.1016/S0960-0779(96)00060-4
- H.N. Agiza and M.T. Yassen, "Synchronization of Rossler and Chen dynamical systems using active control," Phys. Lett. A, vol. 278, pp. 191-197, 2001. https://doi.org/10.1016/S0375-9601(00)00777-5
- M.T. Yassen, "Chaos Synchronization between two different chaotic system using active control," Chaos, Solitons & Fractals, vol. 23, pp. 131-140, 2005. https://doi.org/10.1016/j.chaos.2004.03.038
- U.E. Vincent, "Synchronization of identical and non-identical 4-D chaotic systems using active control," Chaos, Solitons & Fractals, vol. 37, pp. 1065-1075, 2008. https://doi.org/10.1016/j.chaos.2006.10.005
- R.A. Tang, Y.L. Liu and J.K. Xue, "An extended active control for chaos synchronization," Phys. Lett. A, vol. 373, pp. 1449-1454, 2009. https://doi.org/10.1016/j.physleta.2009.02.036
- X.H. Tan, T.Y. Zhang and Y.R. Yang, "Synchronizing chaotic systems using backstepping design," Chaos, Solitons & Fractals, vol. 16 pp. 37-45, 2003. https://doi.org/10.1016/S0960-0779(02)00153-4
- J. Zhang, C. Li, H. Zhang and Y. Yu, "Chaos synchronization using single variable feed-back based on backsepping method," Chaos, Solitons & Fractals, vol. 21, pp. 1183-1193, 2004. https://doi.org/10.1016/j.chaos.2003.12.079
- B. Wang and G.J. Wen, "On the synchronization of a class of chaotic systems based on backstepping method," Lett. A, vol. 370, pp. 35-39, 2007. https://doi.org/10.1016/j.physleta.2007.05.030
- A.N. Njah, K.S. Ojo, G.A. Adebayo and A.O. Obawole, "Generalized control and synchronization of chaos in RCL-shunted Josephson junction using backstepping design," Physica C, vol. 470, pp. 558-564, 2010. https://doi.org/10.1016/j.physc.2010.05.009
- Q. Jia, "Adaptive control and synchronization of a new hyperchaotic system with unknown parameters," Phys. Lett. A, vol. 362, pp. 424-429, 2007. https://doi.org/10.1016/j.physleta.2006.10.044
- H. Zhang, X.K. Ma, M. Li and J.L. Zou, "Controlling and tracking hyperchaotic Rossler system via active backstepping design," Chaos Solitons & Fractals, vol. 26, pp. 353-361, 2005. https://doi.org/10.1016/j.chaos.2004.12.032
- M. Jang, C. Chen and C. Chen, "Sliding mode control of hyperchaos in Rossler systems," Chaos Solitons & Fractals, vol. 14, pp. 1465-1476, 2002. https://doi.org/10.1016/S0960-0779(02)00084-X
- M. Krstic, I. Kanellakopoulus and P. Kokotovic, Nonlinear and adaptive control design, John Wiley & sons, Inc., 1995.
- G.Y. Qi, M.A. van Wyk, B.J. van Wyk and G.R. Chen, "On a new hyperchaotic system," Phys. Lett. A, vol. 372, pp. 124-136, 2008. https://doi.org/10.1016/j.physleta.2007.10.082
- G. Grassi, "Observer-based hyperchaos synchronization in cascaded discrete-time systems," Chaos, Solitons and Fractals, vol. 40, pp. 1029-1039, 2009. https://doi.org/10.1016/j.chaos.2007.08.060
- A.Y. Aguilar-Bustos and C. Cruz-Hernandez, "Synchronization of discrete-time hyperchaotic systems: an application in communications," Chaos, Solitons and Fractals, vol. 41, pp. 1301-1310, 2009. https://doi.org/10.1016/j.chaos.2008.05.012
Cited by
- Mathematical Modelling and Behavior Analysis of Addiction of Physical Exercise vol.24, pp.6, 2014, https://doi.org/10.5391/JKIIS.2014.24.6.615
- Observer-Based FL-SMC Active Damping for Back-to-Back PWM Converter with LCL Grid Filter vol.15, pp.3, 2015, https://doi.org/10.5391/IJFIS.2015.15.3.200
- Chaotic Behavior in a Dynamic Love Model with Different External Forces vol.15, pp.4, 2015, https://doi.org/10.5391/IJFIS.2015.15.4.283
- Behavior Analysis in Love Model of Romeo and Juliet with Time Delay vol.25, pp.2, 2015, https://doi.org/10.5391/JKIIS.2015.25.2.155
- Comparative Behavior Analysis in Love Model with Same and Different Time Delay vol.25, pp.3, 2015, https://doi.org/10.5391/JKIIS.2015.25.3.210
- Analysis of Nonlinear Dynamics in Family Model vol.25, pp.4, 2015, https://doi.org/10.5391/JKIIS.2015.25.4.313
- Analysis of Nonlinear Dynamics in Family Model including Parent-in-Law vol.26, pp.1, 2016, https://doi.org/10.5391/JKIIS.2016.26.1.037