• Title/Summary/Keyword: Electromagnetic Coupling

Search Result 585, Processing Time 0.024 seconds

Implementation of Wireless Charger with the Function of Auto-Shutdown for fully Implantable Middle Ear Hearing Devices (완전 이식형 인공중이를 위한 자동 충전종료형 무선 충전장치의 구현)

  • Lee, Jang-Woo;Lim, Hyung-Gyu;Jung, Eui-Sung;Han, Ji-Hun;Lee, Seung-Hyun;Park, Il-Yong;Cho, Jin-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.539-548
    • /
    • 2007
  • In the paper, a wireless charger with the function of auto-shutdown for fully implantale middle ear hearing devices (F-IMEHD) has been designed. The wireless charger can communicate with an implant module to be turned off automatically shutdown after an internal rechargeable battery has been fully-charged by electromagnetic coupling using two coils. For the communication with an implant module, the wireless charger uses the load shift keying (LSK) method. But, the variation of the mutual inductance due to the different distance between two coils can cause the communication error in receiving the fully-charged signal from an implant module. To solve the problem, the implemented wireless charger has a variable reference generator for LSK communication. The wireless charger generates proper level of the reference voltage for a comparator using an ADC (analog-to-digital converter) and a DAC (digital-to-analog converter). Through the result of experiment, it has been confirmed that the presented wireless charger can detect signals from implantable module. And wireless charger can stop generating electromagnetic flux after an implanted battery has been fully charged in spite of variable coil distance according to different skin thickness.

Performance Measurement of the Wireless Charging Devices Using Eletromagnetic Induction Techniques (전자기유도방식을 이용한 무선 충전 기기의 구현 및 성능 측정)

  • Ryu, Daun;Kim, Young Hyun;Koo, Kyung Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.3
    • /
    • pp.237-243
    • /
    • 2015
  • This paper presented the design of wireless power transfer (WPT) system using electromagnetic induction techniques and analysed WPT efficiency. Also, we presented the optimum coil condition by measuring the efficiency variation according to some receiving coil parameter changes. Voltage change is measured by receiving coil position for the designed transmitting and receiving circuit. Voltage change according to inductance variation at the same position and charging time are compared at the same environment by using a developed application program to realize an optimum WPT system. Developed wireless power transfer system using electromagnetic induction techniques uses 125 kHz. It takes 16 minutes by using wired charger, and 23 minutes by using wireless charger for charging from 50% to 60% charging status.

Compact 40 GHz Hairpin Band-Pass Filter (초소형 40 GHz Hairpin 대역통과 여파기)

  • Lee, Young Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.1
    • /
    • pp.27-30
    • /
    • 2018
  • In this study, a 40 GHz band pass filter(BPF) employing a hair-pin structure has been designed, fabricated, and characterized for millimeter-wave wireless communication applications. Using the 3 dimensional(3-D) electromagnetic(EM) tool and design equations of the hairpin BPF, the BPF was desgned on the 5 mil-thick Duroid substrate(RT5880) with a relative dielectric constant (${\varepsilon}_r$) of 2.2. The tapping point (t) of the U-shape resonator in the input and output port has been determined using extracted an external Q-factor ($Q_e$). The coupling coefficients between the other resonators are calculated by adjusting the physical dimensions for the desired response of the BPF. The fabricated BPF was characterized using probing method on a probe station. Its measured center frequency(fc) and fractional BW are 41.6 GHz and 7.43 %, respectively. The measured return loss is below -10 dB at the pass band and the insertion loss is 3.87 dB. The fabricated BPF is as small as $9.1{\times}2.8mm^2$.

The Open Loop Multiple Split Ring Resonator Based Voltage Controlled Oscillator in 0.13 um CMOS (개방 루프 다중 분할 링 공진기를 이용한 0.13 um 전압 제어 발진기 설계)

  • Kim, Hyoung-Jun;Choi, Jae-Won;Seo, Chul-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.2
    • /
    • pp.202-207
    • /
    • 2010
  • In this paper, a novel voltage-controlled oscillator(VCO) using the open loop multiple split ring resonator(OLMSRR) is presented for improving the phase noise, implemented in 130 nm CMOS technology. Compared with the conventional CMOS LC resonator, the proposed CMOS OLMSRR has the larger coupling coefficient value, which makes a higher Q-factor, and has improved the phase noise of the VCO. The proposed CMOS VCO based OLMSRR has the phase noise of -99.67 dBc/Hz @ 1 MHz in the oscillation frequency. Compared with the VCO using the conventional CMOS LC resonator and the proposed VCO using the CMOS OLMSRR structure has been improved in 7 dB. The prototype 24 GHz CMOS VCO is implemented in 130 nm CMOS and occupies a compact die area of $0.7\;mm{\times}0.9\;mm$.

A Gain and NF Dynamic Controllable Wideband Low Noise Amplifier (이득과 잡음 지수의 동적 제어가 가능한 광대역 저 잡음 증폭기)

  • Oh, Tae-Soo;Kim, Seong-Kyun;Huang, Guo-Chi;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.900-905
    • /
    • 2009
  • A common drain feedback CMOS wideband LNA with current bleeding and input inductive series-peaking techniques is presented in this paper. DC coupling is adopted between cascode and feedback amplifiers, so that the gain and NF of the LNA can be dynamically controlled by adjusting the bleeding current. The fabricated LNA shows the bandwidth of 2.5 GHz. The high gain mode shows 17.5 dB gain with $1.7{\sim}2.8\;dB$ NF and consumes 27 mW power and the low gain mode has 14 dB gain with $2.7{\sim}4.0\;dB$ NF and dissipates 1.8 mW from 1.8 V supply.

Optimal Shape Design of Dual Reflector Antenna Based on Genetic Algorithm (유전 알고리즘 기반의 이중 반사경 안테나 형상최적화 기법)

  • Park, Jung-Geun;Chung, Young-Seek;Kang, Won-June;Shin, Jin-Woo;So, Joon-Ho;Cheon, Chang-Yul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.5
    • /
    • pp.445-454
    • /
    • 2015
  • In this paper, we propose an optimal design method for a dual reflector antenna(DRA) using the Genetic algorithm. In order to reduce the computational burden during the optimal design, we exploit the iterative physical optics(IPO) to calculate the surface current distribution at each reflector antenna. To improve the accuracy, we consider the shadow effect by the structure and the coupling effect by the multi-reflection based on the iterative MFIE(Magnetic Field Integral Equation). To reduce the number of design variables and generate a smooth surface, we use the Bezier function with the control points, which become the design variables in this paper. We adopt the HPBW(Half Power Beam Width), the FNBW(First Null Beam Width), and the SLL(Side Lobe Level) as the objective or cost functions. To verify the results, we compare them with the those of the commercial tool.

Design of RFID Metal Tag Antenna with a Minimum Effect according to Attached Metal Surface Size (부착 금속면 크기에 따른 영향을 최소화 한 RFID 메탈 태그 안테나의 설계)

  • HwangBo, Chang;Seo, Seung-Up;Lee, Yun-Bok;Yang, Myo-Geun;Seong, Won-Mo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.9
    • /
    • pp.978-984
    • /
    • 2008
  • In this paper, we propose a RFID metal tag antenna with a minimum by size of a metal surface to attach. This proposed tag antenna is a patch antenna which is able to stick on metal surface and designed for very slim structure ($119{\times}30{\times}1.6$ mm) antenna that is matched to a chip impedance. This has a loop coupling feeding and consists of a inner radiator and a outer radiator. The outer radiator activates the current to concentrate on the inner radiator regardless of metal size to attach. Also the tag antenna is designed by CST microwave tool and the performance is measured in the anechoic chamber. The optimum antenna has 3.77 % of the matching bandwidth($S_{11}<-10$ dB). The readable range of the tag antenna is about 2.9 m on metal(max. size $700{\times}700$ mm) and 5.5 m in free space according to the measurement results.

Wide Bandwidth PIFA Design Using Reactive Element (리액티브 소자를 이용한 광대역 PIFA 설계)

  • Jo, Ha-Seok;Moon, Sung-Jin;Park, Kyong-Nam;Lee, Jae-Seok;Kim, Hyeong-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.387-392
    • /
    • 2014
  • In this paper, the broadband antenna design, which can be applied to USB Dongle, supporting Wibro(2.3~2.4 GHz), Wi-Fi(2.4~2.5 GHz) and LTE7(2.5~2.7 GHz) is proposed technique. The proposed antenna was designed similar to PIFA type antennas. Reactive elements were used to control the input impedance and wideband characteristics were achieved by controlling coupling between the feed structure and the radiator. As a result, the antenna printed on FR-4 PCB(${\epsilon}_r$ =4.4, tan ${\delta}$=0.02) occupying an area of $15{\times}5mm^2$ was able to achieve bandwidth of 1 GHz from 2.1 to 3.1 GHz under VSWR=2. Measured return loss characteristics, bandwidth and radiation patterns were in good agreement with the simulated results.

Design of Quadrature CMOS VCO using Source Degeneration Resistor (소스 궤환 저항을 이용한 직교 신호 발생 CMOS 전압제어 발진기 설계)

  • Moon Seong-Mo;Lee Moon-Que;Kim Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.12 s.91
    • /
    • pp.1184-1189
    • /
    • 2004
  • A new schematic of quadrature voltage controlled oscillator(QVCO) is designed and fabricated. To obtain quadrature characteristic and low phase noise simultaneously, two differential VCOs are forced to un in quadrature mode by using coupling amplifier with a source degeneration resistor, which is optimized to obtain quadrature accuracy with minimum phase noise degradation. The designed QVCO was fabricated in standard CMOS technology. The measured performance showed the phase noise of below -120 dBc/Hz at 1 MHEz frequency offset, tuning bandwidth of 210 MHz from 2.34 GHz to 2.55 GHz with a tuning voltage varying form 0 to 1.8 V Quadrature error of 0.5 degree and amplitude error of 0.2 dB was measured with conjunction with low-lF mixer. The fabricated QVCO requires 19 mA including 5 mA in the VCO core part fiom a 1.8 V supply.

A Study on the Coupling Performance Improvement of Cylindrical DR Bandpass Filter using Travelling Wave Mode Analysis (진행모드 해석을 이용한 유전체 공진기 대역통과 필터의 결합 특성 개선에 관한 연구)

  • Lee, Won-Hui;Park, Chang-Won;Yang, Jae-Hyuck;Hur, Jung;Lee, J. H.;Lee, Sang-Young
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.125-129
    • /
    • 2000
  • In this paper, We designed and fabricated C-band bandpass filter using dielectric resonators. From waveguide cutoff frequency which applied the region between adjacent dielectric resonators, the height of cavity is determined. The cavity's diameter is determined to the twice of dielectric resonator's diameter considering the conductor loss. The resonant frequency of the DR-cavity is calculated with travelling wave mode analysis. Conventionally, circular cylindrical dielectric resonator is analysed by Cohn's model which use the evanescent mode in the region between dielectric resonator wall and circular cavity wall, which is an approximated method. The external quality factor, Q$_{ex}$ has found with simulation result using Ansoft's Maxwell simulation tool. The designed filter using dielectric resonators with dielectric constant of 45 has the passband center at 5.065GHz. The bandpass filter using dielectric resonators have about 1dB insertion loss. 20MHz bandwidth and more than 30dB attenuation at f$_{0}$$\pm$15MHz.z.z.

  • PDF