DOI QR코드

DOI QR Code

Optimal Shape Design of Dual Reflector Antenna Based on Genetic Algorithm

유전 알고리즘 기반의 이중 반사경 안테나 형상최적화 기법

  • Received : 2015.01.09
  • Accepted : 2015.04.16
  • Published : 2015.05.31

Abstract

In this paper, we propose an optimal design method for a dual reflector antenna(DRA) using the Genetic algorithm. In order to reduce the computational burden during the optimal design, we exploit the iterative physical optics(IPO) to calculate the surface current distribution at each reflector antenna. To improve the accuracy, we consider the shadow effect by the structure and the coupling effect by the multi-reflection based on the iterative MFIE(Magnetic Field Integral Equation). To reduce the number of design variables and generate a smooth surface, we use the Bezier function with the control points, which become the design variables in this paper. We adopt the HPBW(Half Power Beam Width), the FNBW(First Null Beam Width), and the SLL(Side Lobe Level) as the objective or cost functions. To verify the results, we compare them with the those of the commercial tool.

본 논문에서는 고이득 이중 반사경 안테나(DTA: Dual Reflector Antenna)의 성능 향상을 위한 최적설계 기법으로 유전 알고리즘(GA: Genetic Algorithm)을 적용하였다. 또한, 최적설계과정에서 반복해석에 요구되는 계산 시간을 줄이고자 ADE 안테나의 각 반사경의 표면전류분포 계산에 반복적 물리광학법(IPO: Iterative Physical Optics)을 이용하였다. 물리광학법 적용시 음영지역에 대한 고려 및 다중반사에 의한 영향을 MFIE(Magnetic Field Integral Equation) 기반의 반복적인 계산을 통해서 해의 정확도를 향상시켰다. 또한, 설계변수의 축소 및 제작 가능한 부드러운 곡면 형성을 위하여 베지어 곡선을 적용하였다. 이럴 경우, 베지어 곡선의 제어점이 설계변수로 설정이 된다. 최적설계를 위한 목적함수로 HPBW(Half Power Beam Width), FNBW(First Null Beam Width), SLL(Side Lobe Level) 등을 고려하였으며, 설계 및 해석의 결과를 기존의 상용 해석프로그램과 비교하였다.

Keywords

References

  1. C. A. Balanis, Antenna Theory Analysis and Design, McGraw-Hill, 1949.
  2. R. E. Collin, Antenna Theory-part2, McGraw-Hill, 1969.
  3. A. P. Popov, T. Milligan, "Amplitude aperture - distribution control in displaced-axis two reflector antennas", IEEE Antennas and Propagation Magazine, vol. 39, no. 6, pp. 58-63, Dec. 1997. https://doi.org/10.1109/74.646802
  4. V. Galindo, "Design of dual reflector antennas with arbitrary phase and amplitude distributions", IEEE Trans on Antennas and Propagation, vol. AP-12, no. 4, pp. 403-408, Jul. 1964.
  5. J. S. Fernando, A. Prata, "Generalize classical axially symmetric dual-reflector antennas", IEEE Trans of Antennas and Propagation, vol. 49, no. 4, pp. 547-554, Apr. 2001. https://doi.org/10.1109/8.923314
  6. P. J. B. Clarricoats, A. D. Olver, Corrugated Horns for Microwave Antennas, IEEE Electromagnetic Wave Series18, 1984.
  7. J. A. M. Lorenzo, A. G. Pino, "Induced-current analysis of reflector antennas", IEEE Antennas and Propagation Magazine, vol. 47, no. 2, pp. 92-100, Apr. 2005.
  8. F. Obelleiro, J. L. Rodriguez, and R. J. Burkholder, "An iterative physical optics approach for analyzing the electromagnetic scattering by large open-ended cavities", IEEE Trans on Antennas and Propagation, vol. 43, no. 4, pp. 356-361, Apr. 1995. https://doi.org/10.1109/8.376032
  9. M. A. Acuna, A. G. Pino, and O. R. Lopez, "Fast far field computation of single and dual reflector antennas", Journal of Engineering, vol. 2013, Mar. 2013.
  10. M. Grana, M. Arias, and O. Rubinos, "Iterative physical optics solution for MFIE on dual reflector antennas", Electromagnetic Theory Symposium, Jul. 2007.
  11. M. Wong, A. R. Sebak, and T. A. Denidni, "Wideband bezier curve shaped microstrip to H-guide transition", Electronics Letters, vol. 45, no. 24, pp. 1250-1252, Nov. 2009. https://doi.org/10.1049/el.2009.1266
  12. R. L. Hauptm, S. E. Haupt, Practical Genetic Algorithms, Wiley-Interscience, 2004.