영상 인식 기술은 인공지능 기술을 기반으로 인식하고자하는 객체의 형상, 객체 주변의 환경변화 및 객체 회전에 의한 인식 능력 저하를 보완할 수 있는 객체특징점 및 특징 기술자를 생성하고, 생성된 특징 기술자를 이용하여, 영상 객체를 인식하는 기술로, 일반적으로 영상에 나타난 객체를 인식하는 기술을 뜻한다. 스마트 안전 축사에서 전력소비 및 화재 발생 복합 환경 분석을 위해 설치되는 전력화재 관리 디바이스를 통합 관리함으로써 축사 전력 사용의 효율성 향상 및 전기 사용의 과부화로 발생할 수 있는 사고를 방지하여 축산 농가의 이익 증대 및 피해를 최소화하고 안전하고 최적화된 지능형 스마트 안전 축사를 개발하여 보급하는데 요구되는 전력 관리 프레임워크를 구현하는데 목적이 있다.
최근 에너지 인터넷에서 지능형 원격검침 인프라를 이용하여 확보된 대량의 전력사용데이터를 기반으로 효과적인 전력수요 예측을 위해 다양한 기계학습기법에 관한 연구가 활발히 진행되고 있다. 본 연구에서는 전력량 데이터와 같은 시계열 데이터에 대해 효율적으로 패턴인식을 수행하는 인공지능 네트워크인 Gated Recurrent Unit(GRU)을 기반으로 딥 러닝 모델을 제안하고, 실제 가정의 전력사용량 데이터를 토대로 예측 성능을 분석한다. 제안한 학습 모델의 예측 성능과 기존의 Long Short Term Memory (LSTM) 인공지능 네트워크 기반의 전력량 예측 성능을 비교하며, 성능평가 지표로써 Mean Squared Error (MSE), Mean Absolute Error (MAE), Forecast Skill Score, Normalized Root Mean Squared Error (RMSE), Normalized Mean Bias Error (NMBE)를 이용한다. 실험 결과에서 GRU기반의 제안한 시계열 데이터 예측 모델의 전력량 수요 예측 성능이 개선되는 것을 확인한다.
사무소용 빌딩과 같은 전력다소비 건물에서는 전력의 효율적 이용에 의한 에너지절감을 위해서 설계 단계부터 합리적인 전기설비 설계가 요청되고 있다. 본 연구에서는 사무소용 빌딩을 중심으로 부하종류별 전력소비특성을 조사 분석하였고, 전기설계사무소의 설계단계에서 적용하는 수용률값을 조사하였다. 조사된 자료의 전체 특징과 중심적인 경향을 알아보기 위해서 평균값, 표준편차, 최대값, 최소값, 중앙값 등의 특징파라메터를 분석하였고, 회귀분석을 통한 선형적인 방법과 비선형적인 방법으로 그 경향을 확인하였다. 그 결과 합성 수용률/부등률 평균값은 $46.4[\%]$로 나타나 전력용변압기는 용량에 있어서 많은 여유를 가지고 있는 것으로 나타났다. 이를 토대로 변전설비 용량의 합리적인 설계를 위하여 부하종별 수용률 기준(안)을 제시하였고, 변전설비용량 산정에 필요한 자료를 데이터 베이스화하였다.
병원용 건물과 같은 전력다소비 건물에서는 전력의 효율적 이용에 의한 에너지절감을 위해서 설계 단계부터 합리적인 전기설비 설계가 요청되고 있다. 본 연구에서는 병원용 건물 32개소를 선정하여 부하종류별 전력소비특성을 조사 분석하였고, 9개소의 전기설계사무소로부터 설계단계에서 적용하는 수용률값을 조사하였다. 조사된 자료의 전체 특징과 중심적인 경향을 알아 보기 위해서 평균값, 표준편차, 최대값, 최소값, 중앙값 등의 특징파라메터를 분석하였고, 회귀분석을 통한 선형적인 방법과 비선형적인 방법으로 그 경향을 확인하였다. 그 결과 합성 수용률 평균값은 47.5[%]이었으며, 전력용변압기는 용량에 있어서 많은 여유를 가지고 있는 것으로 나타났다. 이를 토대로 변전 설비용량의 합리적인 설계를 위하여 부하종별 수용률 기준(안)을 제시하였고, 변전설비용량 산정에 필요한 자료를 데이터베이스화하였다.
우리나라는 자원 빈국인 동시에 에너지 다소비 국가이다. 또한 전기 에너지에 대한 사용량 및 의존도가 매우 높고, 총 에너지 사용의 20% 이상은 건물에서 소비된다. 딥러닝과 머신러닝에 대한 연구가 활발해지면서 다양한 알고리즘을 에너지 효율 분야에 적용하려는 연구가 진행되고 있으며, 에너지의 효율적인 관리를 위한 건물에너지관리시스템(BEMS)의 도입이 늘어가는 추세이다. 본 논문에서는 스마트플러그를 이용하여 직접 수집한 가구당 기기별 에너지 사용량을 바탕으로 데이터베이스를 구축하였다. 또한 RNN과 LSTM 모델을 이용하여 수집한 데이터를 효과적으로 분석 및 예측하는 알고리즘을 구현하였다. 추후 이 데이터는 에너지 사용량 예측을 넘어 전력 소비 패턴 분석 등에 적용할 수 있다. 이는 에너지 효율 개선에 도움이 될 수 있으며, 미래 데이터의 예측을 통해 효과적인 전력 사용량 관리에 도움을 줄 것으로 기대된다.
900 MW 복합화력발전소의 경우 소내 부하의 대부분은 회전기기이며 저역률로 운전되고 있고 역률 저하는 무효전력을 증가시켜 기기의 효율 저하 및 불필요한 소내 전력을 소비하는 원인이 된다. 본 연구에서는 이러한 문제점을 해결할 수 있는 방안인 무효전력을 흡수 및 제거하는 무효전력보상장치를 6.9 kV 소내 모선에 설치하여 운전함으로써 그에 대한 결과를 제시하고자 한다. 본 시스템의 적용 결과 우선 회전기기의 역률이 0.22로 개선 및 소내 부하전력량 1.4% 감소됨을 확인하였고 발전기 열효율 0.1%, 발전출력810 kW 증가함을 알 수 있었다. 다음으로 투자비 1.5억 원 대비 소내 전력손실비용 2억 원/년 감소 및 매출액 10억 원/년 증가로 경제성 있음으로 분석되었고 향후 건설 및 운영 시 비용절감이 가능함을 확인하였다.
본 논문에서는 가로등 운용에 있어서 일기예보 및 일조량을 고려한 알고리즘을 제안하였다. 이 알고리즘에 의해 생성된 Weather Factor를 적용하여 보행자가 있을 시에는 가로등의 광량을 최대로 유지하고 보행자가 없을 경우 최대전력을 사용하지 않고 일정한 밝기를 유지하는 대기전력모드를 사용하여 전력소비를 줄였다. 이렇게 함으로써 배터리의 잔량을 확보할 수 있으며 이를 이용하여 부조일이 지속될 경우 운용일수를 최대한 연장하기 위한 적절한 알고리즘을 제안하였다. 또한 이러한 알고리즘에 필요한 Weather Factor의 값을 실험을 통하여 결정하였으며. 모의실험을 통해 알고리즘의 적합성을 확인하였다.
$CO_2$ 배출 규제와 에너지 소비 절감의 요구가 늘어남에 따라, 버려지는 열을 수확하여 전기를 생산하기 위한 열전발전 연구가 최근 활발히 이루어지고 있다. 본 연구에서는 폐열 에너지 회수장치로 사용하기 위한 열전모듈의 발전 특성을 분석하였다. Bismuth telluride로 제작된 열전모듈에 다양한 온도 조건을 부여하며 이에 따른 열전 거동을 분석하였다. 또한 다양한 온도 조건에서의 열전모듈의 발전 효율을 실험 및 이론에 의해 분석하였다. 이로 부터, 열전모듈로 열에너지를 보다 효율적으로 회수하기 위한 최적의 작동조건을 제시하였다.
머신 러닝은 인력을 대체함으로써 업무 효율성을 크게 높일 수 있다. 특히 4차 산업혁명 시대의 요청에 따라 인공지능을 포함한 머신 러닝의 중요성은 점점 커지고 있다. 본 논문은 MLP, RNN, LSTM, ANFIS 신경망 알고리즘 이용하여, 월별 전력 거래량을 예측한다. 본 논문에서는 통계청에서 제공하는 월별 전력 거래량과 월별 전력 거래금액, 최종에너지 소비량, 자동차용 경유 가격에 대한 2001~2017년까지의 공공 데이터를 사용하였다. 본 논문은 제시하는 각각의 알고리즘들을 학습시키고, 알고리즘이 예측하는 시계열 그래프를 이용하여 예측 결과를 보여주고 RMSE를 이용하여 이들 중에서 가장 우수한 알고리즘 제시한다.
International Journal of Computer Science & Network Security
/
제22권10호
/
pp.177-182
/
2022
Technology is progressing with every passing day and the enormous usage of electricity is becoming a necessity. One of the techniques to enjoy the assistances in a smart home is the efficiency to manage the electric energy. When electric energy is managed in an appropriate way, it drastically saves sufficient power even to be spent during hard time as when hit by natural calamities. To accomplish this, prediction of energy consumption plays a very important role. This proposed prediction model Coherent Weighted K-Means Clustering ARIMA (CWKMCA) enhances the weighted k-means clustering technique by adding weights to the cluster points. Forecasting is done using the ARIMA model based on the centroid of the clusters produced. The dataset for this proposed work is taken from the Pecan Project in Texas, USA. The level of accuracy of this model is compared with the traditional ARIMA model and the Weighted K-Means Clustering ARIMA Model. When predicting,errors such as RMSE, MAPE, AIC and AICC are analysed, the results of this suggested work reveal lower values than the ARIMA and Weighted K-Means Clustering ARIMA models. This model also has a greater loglikelihood, demonstrating that this model outperforms the ARIMA model for time series forecasting.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.