• Title/Summary/Keyword: Electrical capacitance

Search Result 1,567, Processing Time 0.026 seconds

VPI Varnishing Technology Effects on Frequency Characteristics of an Air Core Inductor Used in LISN Circuit Application

  • Kanzi, Khalil;Kanzi, Majid;Nafissi, Hamidreza
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.57-64
    • /
    • 2013
  • The functional characteristic of LISN circuit, which is used for measurements of conductive noise in mains power line, is basically related to frequency characteristics of passive elements like inductors used in the circuit as well as the frequency response of inductors is highly related to the resins used in the varnishing process. The significant problem in determination of an inductor's frequency characteristic is the intrinsic resistance, inductance and parasitic capacitance. In this triplet, the parasitic capacitance is the major limiting factor of inductor's frequency range. This capacitance depends on inductor design parameters and materials filling the spaces of coil like resin and its coherency after curing process. In this paper, two similar inductors were designed and built. The first inductor was not varnished while the second one was varnished with VPI technology. VPI, or Vacuum, Pressure, Impregnation technology is one of the most reliable methods performing good insulating conditions for electrical circuits and windings based on resins. The measured results show that implying varnishing technology does not significantly affect the frequency response. However, due to mechanical solidity aspects and improved environmental protection, it is better to varnish the inductors.

Mechanism and Characteristics of the Surface Flashover on the Laminated Solid Dielectric in N2/O2 Mixture Gas (N2/O2 혼합가스 중 적층된 고체유전체에 대한 연면방전의 메커니즘과 특성)

  • Lim, Dong-Young;Choi, Eun-Hyeok;Choi, Sang-Tae;Bae, Sungwoo;Lee, Kwang-Sik;Choi, Byoung-Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.8
    • /
    • pp.32-39
    • /
    • 2015
  • This paper presents the surface flashover mechanism of a laminated solid dielectric and describes the surface flashover characteristics with the inherent capacitance of the laminated solid dielectric in a $N_2/O_2$ mixture gas (8:2) under an quasi uniform field. It was found that the electron emission at a cathode and the high-local electric field region around an anode were important factors to reasonably describe the surface flashover mechanism. The surface flashover voltage by the mechanism decreased with the inherent capacitance increase of the laminated solid dielectric. In addition to the surface flashover mechanism and its characteristics, the surface flashover voltage equations as a function of the inherent capacitance were derived by considering a gas pressure used in future eco-friendly GIS and the factors influencing the surface flashover.

Transformer Leakage Inductance Calculation Used in DAB Converters Considering the Influence of SiC MOSFET Parasitic Capacitance (SiC MOSFET 기생 커패시턴스의 영향을 고려한 DAB 컨버터에 사용되는 변압기의 누설인덕턴스 계산)

  • Cheol-Woong Choi;Jae-Sub Ko;Ji-Yong So;Dae-Kyong Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.4_2
    • /
    • pp.935-942
    • /
    • 2024
  • This study analyzes the effects of the parasitic capacitance of the SiC MOSFET used in the Dual Active Bridge ( DAB) converter and proposes a method for calculating the leakage inductance of the transformer. The DAB converter employs high-frequency switching to achieve high efficiency, high power density, and reliability. MOSFETs possess parasitic capacitance, which induces resonance with the leakage inductance of the transformer during switching operations, resulting in a voltage change delay. This paper discusses the effect of the delay of voltage changes on the DAB converter output and proposes a method to calculate the delay time. This method aims to equalize the delay time to minimize this effect and enhance the accuracy of the leakage inductance calculation of the transformer. The proposed method is validated through experiments and simulations.

Delamination evaluation on basalt FRP composite pipe by electrical potential change

  • Altabey, Wael A.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.5
    • /
    • pp.515-528
    • /
    • 2017
  • Since composite structures are widely used in structural engineering, delamination in such structures is an important issue of research. Delamination is one of a principal cause of failure in composites. In This study the electrical potential (EP) technique is applied to detect and locate delamination in basalt fiber reinforced polymer (FRP) laminate composite pipe by using electrical capacitance sensor (ECS). The proposed EP method is able to identify and localize hidden delamination inside composite layers without overlapping with other method data accumulated to achieve an overall identification of the delamination location/size in a composite, with high accuracy, easy and low-cost. Twelve electrodes are mounted on the outer surface of the pipe. Afterwards, the delamination is introduced into between the three layers (0º/90º/0º)s laminates pipe, split into twelve scenarios. The dielectric properties change in basalt FRP pipe is measured before and after delamination occurred using arrays of electrical contacts and the variation in capacitance values, capacitance change and node potential distribution are analyzed. Using these changes in electrical potential due to delamination, a finite element simulation model for delamination location/size detection is generated by ANSYS and MATLAB, which are combined to simulate sensor characteristic. Response surfaces method (RSM) are adopted as a tool for solving inverse problems to estimate delamination location/size from the measured electrical potential changes of all segments between electrodes. The results show good convergence between the finite element model (FEM) and estimated results. Also the results indicate that the proposed method successfully assesses the delamination location/size for basalt FRP laminate composite pipes. The illustrated results are in excellent agreement with the experimental results available in the literature, thus validating the accuracy and reliability of the proposed technique.

A Fault Operation of the IPM Due to the Effect of Miller Capacitance and its Solution (밀러 커패시턴스의 영양에 의한 IPM의 오동작과 대책)

  • 조수억;강필순;김철우
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.6
    • /
    • pp.83-88
    • /
    • 2003
  • This paper analyses a fault operation due to the effect of miller capacitance, which severely influences the performance of the IPMs based on computer-aided simulations, and also it presents a good solution to solve that problem. A miller capacitance existed between gate and collect is very closely related to the stray capacitance formed between gate and emitter, and the value of gate resistor. These relationships are proved by the computer-aided simulation. Based on the PSpice simulation results, a customized IPM employing an auxiliary circuit is presented to minimize a fault operation. And it is compared to the standard IPM by the experimental waveform. As a result, it is verified that a customized IPM has a voltage margin to prevent a fault operation approx. 3 [V].

Electrochemical Properties of EDLC Electrodes with Diverse Graphene Flake Sizes (그래핀 플레이크 크기에 따른 전기 이중층 커패시터용 전극의 전기화학적 특성)

  • Yu, Hye-Ryeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.2
    • /
    • pp.112-116
    • /
    • 2018
  • Electric double layer capacitors (EDLCs) are promising candidates for energy storage devices in electronic applications. An EDLC yields high power density but has low specific capacitance. Carbon material is used in EDLCs owing to its large specific surface area, large pore volume, and good mechanical stability. Consequently, the use of carbon materials for EDLC electrodes has attracted considerable research interest. In this paper, in order to evaluate the electrochemical performance, graphene is used as an EDLC electrode with flake sizes of 3, 12, and 60 nm. The surface characteristic and electrochemical properties of graphene were investigated using SEM, BET, and cyclic voltammetry. The specific capacitance of the graphene based EDLC was measured in a 1 M $TEABF_4/ACN$ electrolyte at the scan rates of 2, 10, and 50 mV/s. The 3 nm graphene electrode had the highest specific capacitance (68.9 F/g) compared to other samples. This result was attributed to graphene's large surface area and meso-pore volume. Therefore, large surface area and meso-pore volume effectively enhances the specific capacitance of EDLCs.

Analysis of pulsed Plasma Reactor using Modelling Method (펄스플라즈마 반응기의 모델링에 의한 해석)

  • Choe, Yeong-Uk;Lee, Hong-Sik;Im, Geun-Hui;Kim, Tae-Hui;Baek, Min-Su;Jang, Gil-Hong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.1
    • /
    • pp.30-35
    • /
    • 2000
  • The pulsed plasma wire-plate reactor was analyzed on the basis of experiment, EMTP simulation and modelling method. Though the reactor has a non-linear impedance characteristics, we demonstrate that the reactor impedance can be approximately analyzed with the measured initial capacitance and average resistive component of flat zone. Using this modelling method, the influence of the reactor capacitance on the impedance matching between pulse generator and reactor can be investigated. From this, we found that the energy of 95% was delivered form pulse generator to reactor at the ratio of $C_r/C_p\cong 0.3,\; where\; C_p\; is\; pulse\; generator\; capacitance, C_r$ is reactor capacitance.

  • PDF

A Study on the Characteristics Analysis of Hybrid Choke Coil with Reduced Parasitic Capacitance suitable for LED-TV SMPS (LED-TV용(用) 전원장치에 적합한 기생 커패시턴스 저감형 Hybrid 초크 코일의 특성 해석에 관한 연구)

  • Lee, Jong-Hyeon;Kim, Gu-Yong;Kim, Jong-Hae
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.185-188
    • /
    • 2018
  • This paper describes the parasitic capacitance modeling according to the coil structure, section bobbin and winding method for hybrid choke coil with reduced parasitic capacitance capable of the EMI attenuation of broad bands from lower frequency to higher frequency applied in the EMI attenuation filter of LED-TV SMPS. Especially, the hybrid choke coil with reduced parasitic capacitance($C_p$) proposed in this paper can reduces the parasitic capacitance($C_p$) by adopting the winding methods of rectangular copper wire, compared to the conventional common mode choke coil with the winding method of automatic type. The first resonant frequency of the proposed hybrid choke coil has a tendency to increase as the parasitic capacitance is smaller and its impedance characteristics, especially in the high frequency bands, improves as the first resonant frequency increases. In the future, the proposed hybrid choke coil with reduced parasitic capacitance shows it can be actually utilized in not only LED-TV SMPS but also various applications such as LED Lighting, Note-PC Adapter, and so forth.

Capacitance-voltage Characteristics of MOS Capacitors with Ge Nanocrystals Embedded in HfO2 Gate Material

  • Park, Byoung-Jun;Lee, Hye-Ryeong;Cho, Kyoung-Ah;Kim, Sang-Sig
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.699-705
    • /
    • 2008
  • Capacitance versus voltage (C-V) characteristics of Ge-nanocrystal (NC)-embedded metal-oxide-semiconductor (MOS) capacitors with $HfO_2$ gate material were investigated in this work. The current versus voltage (I-V) curves obtained from Ge-NC-embedded MOS capacitors fabricated with the $NH_3$ annealed $HfO_2$ gate material reveal the reduction of leakage current, compared with those of MOS capacitors fabricated with the $O_2$ annealed $HfO_2$ gate material. The C-V curves of the Ge-NC-embedded MOS capacitor with $HfO_2$ gate material annealed in $NH_3$ ambient exhibit counterclockwise hysteresis loop of about 3.45 V memory window when bias voltage was varied from -10 to + 10 V. The observed hysteresis loop indicates the presence of charge storages in the Ge NCs caused by the Fowler-Nordheim (F-N) tunneling. In addition, capacitance versus time characteristics of Ge-NC-embedded MOS capacitors with $HfO_2$ gate material were analyzed to investigate their retention property.

Development of alcohol gas sensors measurable at room temperature (상온에서 측정 가능한 음주 측정용 알코올 가스 센서)

  • Jeon, Byung-Hyun;Lee, Ju-Hyuk;Kim, Seong-Jean;Lee, Cheol-Jin;Choi, Bok-Gil
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3265-3267
    • /
    • 1999
  • Capacitance-type alcohol gas sensors using porous silicon (PS) layer as sensitive film were fabricated to measure low alcohol gas concentration. Though sensors using porous silicon layer have show high sensitivity by large internal surface area, there is still much room for improvement to measure low breath alcohol concentration especially at room temperature. In this work, to discuss the response properties against exposure to organic vapor for breath alcohol measurements on the basis of experimental results. we measured the variation of the capacitance for the range of 0 to 0.5% alcohol concentration, and observed the improvement of sensitivity by illumination of UV light. In addition, the effect of CO2 and N2 gases involved commonly in exhaling breath was estimated, and the same procedure against methanol vapor was executed to compare qualitatively with the capacitance characteristics by alcohol vapor.

  • PDF