DOI QR코드

DOI QR Code

Electrochemical Properties of EDLC Electrodes with Diverse Graphene Flake Sizes

그래핀 플레이크 크기에 따른 전기 이중층 커패시터용 전극의 전기화학적 특성

  • Yu, Hye-Ryeon (The 4th R&D Institute-4, Agency for Defense Development)
  • 유혜련 (국방과학연구소 4기술연구본부 4부)
  • Received : 2017.11.13
  • Accepted : 2017.12.13
  • Published : 2018.02.01

Abstract

Electric double layer capacitors (EDLCs) are promising candidates for energy storage devices in electronic applications. An EDLC yields high power density but has low specific capacitance. Carbon material is used in EDLCs owing to its large specific surface area, large pore volume, and good mechanical stability. Consequently, the use of carbon materials for EDLC electrodes has attracted considerable research interest. In this paper, in order to evaluate the electrochemical performance, graphene is used as an EDLC electrode with flake sizes of 3, 12, and 60 nm. The surface characteristic and electrochemical properties of graphene were investigated using SEM, BET, and cyclic voltammetry. The specific capacitance of the graphene based EDLC was measured in a 1 M $TEABF_4/ACN$ electrolyte at the scan rates of 2, 10, and 50 mV/s. The 3 nm graphene electrode had the highest specific capacitance (68.9 F/g) compared to other samples. This result was attributed to graphene's large surface area and meso-pore volume. Therefore, large surface area and meso-pore volume effectively enhances the specific capacitance of EDLCs.

Keywords

References

  1. G. Pognon, T. Brousse, and D. Belanger, Carbon, 49, 1340 (2011). [DOI: https://doi.org/10.1016/j.carbon.2010.11.055]
  2. R. L. Tseng, S. K. Tseng, F. C. Wu, C. C. Hu, and C. C. Wang, J. Chin. Inst. Chem. Eng., 39, 37 (2008). [DOI: https://doi.org/10.1016/j.jcice.2007.11.005]
  3. M. Wang and Y. Ma, Electrochim. Acta, 250, 320 (2017). [DOI: https://doi.org/10.1016/j.electacta.2017.08.073]
  4. T. Ohsaka and N. Oyama, Electrochemical Analysis Method, ed. J. M. Jang and C. W. Lee (Jayou academy, Seoul, 1994) p. 113.
  5. M. Ramani, B. S. Haran, R. E. White, and B. N. Popov, J. Electrochem. Soc., 148, A374 (2001). [DOI: https://doi.org/10.1149/1.1357172]
  6. H. J. Chon and S. Con, Introduction of Catalyst (Hanrimwon, Seoul, 2002) p. 25.
  7. S. J. Park, Theory and Application of Carbon Materials (Daiyoungsa, Seoul, 2006) p. 639.
  8. M. Kodama, J. Yamashita, Y. Soneda, H. Hatori, S. Nishimura, and K. Kamegawa, Mater. Sci. Eng., B, 108, 156 (2004). [DOI: https://doi.org/10.1016/j.mseb.2003.10.097]
  9. H. Y. Liu, K. P. Wang, and H. Teng, Carbon, 43, 559 (2005). [DOI: https://doi.org/10.1016/j.carbon.2004.10.020]
  10. W. Xing, S. Z. Qiao, R. G. Ding, F. Li, G. Q. Lu, Z. F. Yan, and H. M. Cheng, Carbon, 44, 216 (2006). [DOI: https://doi.org/10.1016/j.carbon.2005.07.029]
  11. B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, Z. Zhou, and Y. Yang, Electrochem. Commun., 10, 795 (2008). [DOI: https://doi.org/10.1016/j.elecom.2008.02.033]
  12. M. J. Jung, E. Jeong, Y. Kim, and Y. S. Lee, J. Ind. Eng. Chem., 19, 1315 (2013). [DOI: https://doi.org/10.1016/j.jiec.2012.12.034]