• Title/Summary/Keyword: Electrical Contact

Search Result 2,095, Processing Time 0.027 seconds

A Study on the Development and Characteristics Evaluation of Non-Contact HFCT Sensor for Partial Discharge Measurement (부분방전 측정용 비접촉식 HFCT 센서개발 및 특성평가에 관한 연구)

  • Sang-Bo Han
    • Journal of IKEEE
    • /
    • v.28 no.2
    • /
    • pp.131-135
    • /
    • 2024
  • In this study, the sensor such as current transformer type was developed for measuring non-contact partial discharge in power electrical facilities, and the results of the characteristic evaluation were discussed. The frequency response characteristics of the HFCT sensor were shown to be measurable from 20 [kHz] to 20 [MHz]. The average sensitivity for the positive direction was 0.308 [mV/pC], and the negative direction was 0.459 [mV/pC]. Which showed that the sensitivity for the negative direction was better than that for the positive direction. The developed HFCT sensor is possible to measure very small partial discharge pulse signals and can be measured various types of partial discharge that may occur at power electrical facilities.

Calculation of Electrodynamic Repulsion Force in Molded Case Circuit Breakers Using the 3-D Finite Element Analysis (3차원 유한요소 해석을 이용한 배선용 차단기의 전자반발력 계산)

  • Kim, Yong-Gi;Park, Hong-Tae;Song, Jung-Chun;Seo, Jung-Min;Degui, Chen
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.137-140
    • /
    • 2003
  • To the optimization design of molded case circuit breakers(MCCBs), it is necessary and important to calculate the electro-dynamic repulsion force acting on the movable conductor. With 3-D finite element nonlinear analysis, according to the equations among current-magnetic field-repulsion force and taking into account the ferromagnet, contact bridge model is introduced to simulate the current constriction between contacts, so Lorentz and Holm force acting on the movable conductor and contact, respectively, can be integrated to calculate. Coupled with circuit equations, the opening time of movable contact also can be obtained using iteration with the restriction of contact force. Simulation and experiment for repulsion forte and opening time of five different configuration models have been investigated. The results indicate that the proposed method is effective and capable of evaluating new design of contact systems in MCCBs.

  • PDF

A study on identification of the damping ratio in a railway catenary system (철도 가선시스템의 감쇄 특성 파악에 관한 연구)

  • Park Sungyong;Jeon Byunguk;Lee Eungshin;Cho Yonghyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.529-533
    • /
    • 2005
  • A railway catenary system which supplies a train with electric power is an important system in determining the maximum speed of an electric train. However, a pantograph could be separated from a contact wire because of reciprocal action between a pantograph with constant upward force and a catenary system. The contact loss of a pantograph-catenary system is mainly affected by the dynamic characteristics of damping and wave propagation velocity of contact wire. For increasing speed of an electrical train, it is necessary to establish the techniques to identify the modal parameter of a catenary system through experiment. However, it is difficult to decouple each mode and to extract respect ive damping rat io since a catenary system has an extremely high modal density. For this reason, mode decoupling process to identify modal parameters is a principal technique in analyzing a catenary system. In this paper, the damping extract ion method for a catenary system using the continuous wavelet transform is discussed.

  • PDF

VARIATIONAL ANALYSIS OF AN ELECTRO-VISCOELASTIC CONTACT PROBLEM WITH FRICTION AND ADHESION

  • CHOUGUI, NADHIR;DRABLA, SALAH;HEMICI, NACERDINNE
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.161-185
    • /
    • 2016
  • We consider a mathematical model which describes the quasistatic frictional contact between a piezoelectric body and an electrically conductive obstacle, the so-called foundation. A nonlinear electro-viscoelastic constitutive law is used to model the piezoelectric material. Contact is described with Signorini's conditions and a version of Coulomb's law of dry friction in which the adhesion of contact surfaces is taken into account. The evolution of the bonding field is described by a first order differential equation. We derive a variational formulation for the model, in the form of a system for the displacements, the electric potential and the adhesion. Under a smallness assumption which involves only the electrical data of the problem, we prove the existence of a unique weak solution of the model. The proof is based on arguments of time-dependent quasi-variational inequalities, differential equations and Banach's fixed point theorem.

Displacement Characteristics of Cymbal Actuator with Metal Endcap Structure (금속 앤드캡 구조에 따른 심벌 액츄에이터의 변위 특성)

  • Choi, Sung-Young;Kim, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.844-846
    • /
    • 1998
  • In this study, Brass endcap with 2, 3, 5, and 7mm contact surface and 0.6, 0.9, 1.2, 1.5mm conical cavity depths was fabricated by the punch die while keeping the cavity diameter constant 9.25mm then displacement characteristics of the cymbal actuators with each of brass endcap thickness were measured under an applied voltage $60V_{max}$. Dispacement increased with increasing contact surface and resonant frequency decreased with increasing contact surface, cymbal actuator with 7mm contact surface and 1.5mm endcap cavity depth exhibits $35.89{\mu}m$ displacement and 18.8kHz resonant frequency, displacement increased with increasing endcap cavity depth while contact surface was kept constant at 3mm and Below a endcap thickness of 0.2mm, Differences in displacement between 1.2mm and 1.5mm cavity depth appeared at $0.18{\mu}m$. that is, displacement of cymbal actuator with 1.2mm over cavity depth saturated nearly.

  • PDF

Study on Output Characteristics of Printed Flexible Tactile Sensors Connected to Brass Terminals (황동단자에 대한 인쇄형 유연촉각센서의 출력 특성)

  • Kim, Jindong;Bae, Yonghwan;Lee, Inhwan;Kim, Hochan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.4
    • /
    • pp.65-70
    • /
    • 2020
  • While the demand for robots in the manufacturing industry has dramatically increased, the industrial robots' functionality is mainly determined by the effector attached to the end of their arms. They need a flexible gripping system that can act as a human hand and easily grasp a variety of objects, which requires resilient sensors. This study clarifies the electrical output characteristics of elastic tactile sensors according to contact terminals because the output characteristics of the tactile sensors vary greatly, depending on the contact material and the method of contact with the conductive wire. Our research considers the Three Roll Mill and Paste Mixer as the dispersion medium, and a nickel- and gold-plated brass electrode as the contact terminal.

Effect of Rapid Thermal Annealing on the Ti doped In2O3 Films Grown by Linear Facing Target Sputtering

  • Seo, Ki-Won;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.342.1-342.1
    • /
    • 2014
  • The electrical, optical and structural properties of Ti doped $In_2O_3$ (TIO) ohmic contacts to p-type GaN were investigated using linear facing target sputtering (LFTS) system. Sheet resistance and resistivity of TIO films are decreased with increasing rapid thermal annealing (RTA) temperature. Although the $400^{\circ}C$ and $500^{\circ}C$ annealed samples showed rectifying behavior, the $600^{\circ}C$ and $700^{\circ}C$ annealed samples showed linear I-V characteristics indicative of the formation of an ohmic contact between TIO and p-GaN. The annealing of the contact at $700^{\circ}C$ resulted in the lowest specific contact resistivity of $9.5{\times}10^{-4}{\Omega}cm^2$. Based on XPS depth profiling and synchrotron X-ray scattering analysis, we suggested a possible mechanism to explain the annealing dependence of the properties of TIO layer on rapid thermal annealing temperature.

  • PDF

An Analysis on the Characteristics of the Contact-less Power Supply (무접점 전원장치의 특성분석)

  • Lee, Hyun-Kwan;Lee, Gi-Sik;Chung, Bong-Geun;Kang, Sung-In;Kong, Young-Su;Kim, Eun-Soo;Kim, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.919-922
    • /
    • 2006
  • Comparing with the conventional transformer without the air gap, a contact-less transformer with the large air-gap (4.8cm) between the long primary winding and the secondary winding has the increased leakage inductance and the reduced magnetizing inductance. By the increased leakage inductance and the reduced magnetizing inductance on the primary of the contact-less transformer, a good deal of the primary current circulates through magnetizing inductance, which results in a massive loss in contact-less power supply (CPS). In this paper, the efficiency characteristics of the contact-less power supply using a series resonant converter is analyzed and simulated. The results are verified on the simulation based on the theoretical analysis and the 1.8kW experimental prototype.

  • PDF

Electric Field Analysis of 170kV 50kA Class SF6 GCB Without Capacitor (170kV 50kA 콘덴서 불용형 SF6 가스절연개폐기의 극간 전계해석)

  • Song, Tae-Hun;Bae, Dong-Jin;Choi, Young-Chan;Kim, Ik-Mo;Yoon, Chi-Young;Kang, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.351-353
    • /
    • 1999
  • In this paper, electric field analysis of 170kV class GCB is carried out. Considering the movement of arcing contacts during circuit interruption, electric field analysis between moving and fixed contacts is performed with changing the stroke length. From analysis results, electric field stresses are high at stationary arcing contact, moving arcing contact and varies at changing nozzle shapes. Specially, the stationary arcing contact shape has an significant effect on the capacitive small current interruption and the reduction of the electric field stress at this area is important. Varying the shape of stationary arcing contact, electric field analysis is carried out and the optimal shpae of the fixed arcing contact where the electric field stress is low is designed.

  • PDF

Effects of Specimen Preparation Method and Contact Resistance on the Formation of Anodizing Films on Aluminum Alloys (시편의 준비 방법 및 접촉저항이 알루미늄 합금의 아노다이징 피막 형성에 미치는 영향)

  • Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • In this study, five different specimen preparation methods were introduced and their advantages and disadvantages were presented. One of them, an epoxy mounting method has advantages of constant exposure area, ease of surface preparation without touching the specimen surface during polishing or cleaning, use of small amount of material and ease of specimen reuse by polishing or etching. However, in order to eliminate unexpected errors resulting from preferable reaction at the specimen/epoxy interface and contact resistance between the specimen and copper conducting line for electrical connection, it is recommended to cover the wall side of the specimen with porous anodic oxide films and to remain the contact resistance lower than 1 ohm. The increased contact resistance between the specimen and Cu conducting line appeared to result in increases of anodizing voltage and solution temperature during anodizing by which thickness and hardness of anodizing film on Al2024 alloy were drastically decreased and color of the films became more brightened.