• Title/Summary/Keyword: Eddy-diffusion model

Search Result 40, Processing Time 0.024 seconds

The Characteristics of Turbulent Diffusion Flame Impinging on the Wall (벽면 충돌 난류 확산화염의 특성)

  • Park, Yong Youl;Kim, Ho Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.175-184
    • /
    • 1999
  • A theoretical study on the turbulent round jet diffusion flame impinging on the wall was carried out to predict the characteristics and structure of Impinging jet flame and heat transfer to the wall. Finite chemistry via Arrhenius equation and eddy dissipation model was adopted as a combustion model, and the Favre averaging and $k-{\varepsilon}$ model were Introduced In the theoretical modeling. The SIMPLE algorithm was applied to the calculation. All the transport properties were considered as the variable depending on the temperature and composition. For the parametric study, the distance from nozzle to impinging wall and Reynolds number at nozzle exit were chosen 88 the major parameters. As the results of the present study, the characteristics of flow fields, the distributions of main variables and each chemical species and the flame shapes were obtained. The heat transfer rate from the flame to the wall and the effective heating area were calculated to investigate the Influences of the major parameters on the heat transfer characteristics.

Numerical Simulation of Buoyant flume Dispersion in a Stratified Atmosphere Using a Lagrangian Stochastic Model

  • Kim, Hyun-Goo;Noh, Yoo-Jeong;Lee, Choung-Mook;Park, Don-Bum
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.440-448
    • /
    • 2003
  • In the present paper, numerical simulations of buoyant plume dispersion in a neutral and stable atmospheric boundary layer have been carride out. A Lagrangian Stochastic Model (LSM) with a Non-Linear Eddy Viscosity Model (NLEVM) for turbulence is used to generate a Reynolds stress field as an input condition of dispersion simulation. A modified plume-rise equation is included in dispersion simulation in order to consider momentum effect in an initial stage of plume rise resulting in an improved prediction by comparing with the experimental data. The LSM is validated by comparing with the prediction of an Eulerian Dispersion Model (EDM) and by the measured results of vertical profiles of mean concentration in the downstream of an elevated source in an atmospheric boundary layer. The LSM predicts accurate results especially in the vicinity of the source where the EDM underestimates the peak concentration by 40% due to inherent limitations of gradient diffusion theory. As a verification study, the LSM simulation of buoyant plume dispersions under a neutral and stable atmospheric condition is compared with a wind-tunnel experiment, which shows good qualitative agreements.

A Study on Magnetic Field Distribution Characteristics for Remote Field Area (리모트 필드 영역에서의 자계 분포특성에 관한 연구)

  • Kim, S.K.;Lee, E.U.;Lim, S.S.;Kim, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.312-314
    • /
    • 2000
  • The electric wave propagation characteristics of electromagnetic field by induction current shows a nonlinear distinction in the metal but linear on air. This paper is written about the magnetic transmission distinction in the metalic tube, which wrapped the center axis by the same direction. The electromagnetic field made by the transmission signal is transferred from the transmission coil area toward the receiving coil by the magnetic diffusion. So, it is different magnetic flux around the coil with one in the remote field area. Analyzing such a complex magnetic characteristic, we verified this theory by the vector analysis and presented eddy current mechanism and analytical model about magnetic distribution in the remote field area. This magnetic distribution rate in metal body will be very useful in the nondestructive inspection of the eddy current in remote field which is recently rising as a new technology.

  • PDF

Flow Structure Prediction for a Square Harbour using Various Wall Boundary Conditions (다양한 벽 경계조건을 이용한 정사각형 항구의 흐름구조 예측)

  • Kang, Yun-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.151-158
    • /
    • 1999
  • A model harbour with Plan scale of $1.08{\times}1.08m$ is built on a tidal tank using a Froude relationship from a real harbour($432{\times}432m$). Velocity components are measured by a ultrasonic velocity meter and flow structure is then predicted using a 2-D depth integrated hydrodynamic model. In the finite difference model implemented in this study, various wall boundary conditions, i.e. no-slip, free-slip, partial-slip and semi-slip are used to represent turbulent diffusion terms, e.g. ${\partial}^2U_{ij}/{\partial}x^2\;or\;{\partial}^2U_{ij}/{\partial}y^2$. These conditions are focused to investigate their influence on the flow structure along the wall and basin of the harbour with aspect ratio of unity, i.e. Length/Breadth. Numerical experiments are compared with the measurements and used to analyse flow patterns in the basin during tidal cycles. It is shown from the results that no-slip closed boundary condition is the most appropriate method with respect to the location of the eddy centre, although the condition underestimates velocity components along the wall.

  • PDF

Effect of burnt gas mixing on the extinction of interacting flames premixed (기연가스의 혼합이 상호작용을 하는 예혼합화염의 소화특성에 미치는 영향에 관한 연구)

  • 임홍근;정석호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.37-48
    • /
    • 1989
  • The effects of burnt gas mixing, which can be caused by turbulent eddy mixing, on the interaction and extinction characteristics of premixed flames are analyzed using large activation energy asymptotics adopting counterflow as a model problem. The results show that the burnt gas mixing, preferential diffusion and heat loss affect the fuel consumption rate, flame temperature and the oxidizer concentration at the flame which influence the flame behavior and the extinction characteristics.

  • PDF

A Numerical Analysis for Two-phase Turbulent Flow in the Neutral Atmosphere (중립 대기 상태에서 이상 난류유동에 관한 수치적 연구)

  • Kang, Seung-Kyu;Yoon, Joon-Yong;Lee, Do-Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.772-778
    • /
    • 2002
  • A numerical analysis of turbulent gas-particle two-phase flow is performed in conjunction with the experiments of Fackrell & Robins and Raupach & Legg that considered ground-level source and/or elevated source flat plate flow. K-$\omega$ turbulence model is used in order to analyze fully turbulent flow field and the concentration equation with settling velocity is adopted for the concentration field. The model of Einstein and Chien is applied that couples the velocity field and the concentration field. Turbulent eddy viscosity is re-evaluated in this model. The present numerical results have good agreement between the simulation and the experimental data for the mean flow velocities and particle concentrations. While the previous study shows about 27% error in the vicinity of the source of particle concentration, the .present study allows about 14% error. A new turbulent gas-particle flow model developed by this study is able to cut down error by 13% at a near source.

Numerical Analysis for a Swirling Confined Non-Premixed Flame with Modified Lagrangian model (수정 Lagrangian model을 이용한 선회 비 예혼합 화염에 대한 수치적 연구)

  • Min, Byoung-Hyouk;Kim, Ho-Young;Chung, Jin-Taek
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.113-122
    • /
    • 2002
  • The purpose of this study is to verify that the modified Lagrangian model can predict temperature, flow and scalar fields in the high temperature recirculation region of swirling confined diffusion flame. In the meantime numerical results from EBU and Equilibrium PDF models as well as experimental results are compared with those from the modified Lagrangian model. Adaption of three different turbulent models were accompanied with this procedure. Look-up table of the ignition characteristic time scale which is one of important factors of the Lagrangian model was referred to the 11-step reduced mechanism. Eventually, results with the Lagrangian model show a good accordance with experimental results, which shows the validity of this model. Results from Chen's model differ from those of the others. Numerical results of ${\widetilde{k}$ show significant deviation from experimental results for three models.

  • PDF

REYNOLDS STRESS MODELING OF OPEN-CHANNEL FLOWS OVER BEDFORMS

  • Choi, Sung-Uk;Kang, Hyeong-sik
    • Water Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.247-258
    • /
    • 2002
  • This paper presents a non-isotropic turbulence modeling of flows over bedforms. The Reynolds stress model is used for the turbulence closure. In the model, Launder, Reece, and Rodi's model and Hanjalic and Launder's model are employed f3r the pressure strain correlation term and the diffusion term, respectively. The mean flow and turbulence structures are simulated and compared with profiles measured in the experiments. The numerical solutions from two-equation turbulence models are also provided for comparisons. The Reynolds stress model yields the separation length of eddy similar to the other numerical results. Using the developed model, the resistance coefficients are also estimated for the flows at different Froude numbers. Karim's (1999) relationship is used to determine the bedform geometry. It is found that the values of the form drag and the skin friction are very similar to those obtained by the other turbulence models. meaning higher values of the form drag and lower values of the skin friction compared with the empirical formulas.

  • PDF

Fractals in the Spreading of Drifters: Observation and Simulation (표류부표 분산의 프랙탈 성질: 관측 및 시뮬레이션)

  • KANG, YONG Q.;LEE, MOONJIN
    • 한국해양학회지
    • /
    • v.29 no.4
    • /
    • pp.392-401
    • /
    • 1994
  • We examined the temporal characteristics of the oceanic eddy diffusion at 5 coastal regions of Korea by measuring the separation distances of multiple drifters released simultaneously at the same by the GPS and Decca transponder system. The observed variance of separation distance, for the time scales from minutes to hours, is proportional to t/SUP m/ with scaling exponent m between 1.2 and 2.0. The observed Lagrangian trajectories of drifters show fractal characteristics instead of random walk or Brown motion. As an effort toward a development of a realistic model of the oceanic eddy diffusion, we simulated the Lagrangian trajectories of drifters by fractional Brown motion (FBM) model. The observed variances of drifter separations can be generated by the FBM process provided the Hurst exponent is the same as the observed one. We further showed that the observed power law in the variance of drifter separations cannot be simulated with an ordinary Brown motion or random walk process.

  • PDF

A Study on the Characteristics of Flame Structure in Coaxial Diffusion Combustor With Swirl (선회를 갖는 동축확산연소기의 화염구조에 관한 연구)

  • Kim, K.S.;Lee, W.S.;Kang, I.G.;Lee, D.H.
    • Journal of Power System Engineering
    • /
    • v.4 no.1
    • /
    • pp.39-44
    • /
    • 2000
  • The purpose of this study is to investigate the flame structure and combustion characteristics in the model gas turbine combustor changing equivalence ratio. For this purpose, temperature and ion current were measured and these data were analyzed by the PDF and power spectra technique. We found that the flame length is longer while increasing the equivalence ratio in experimental condition, and especially ${\psi}=0.19$, combustion reaction was active by the stable swirl flow. and these flames were governed by the random three dimensional eddy.

  • PDF