Numerical Simulation of Buoyant flume Dispersion in a Stratified Atmosphere Using a Lagrangian Stochastic Model

  • Published : 2003.03.01

Abstract

In the present paper, numerical simulations of buoyant plume dispersion in a neutral and stable atmospheric boundary layer have been carride out. A Lagrangian Stochastic Model (LSM) with a Non-Linear Eddy Viscosity Model (NLEVM) for turbulence is used to generate a Reynolds stress field as an input condition of dispersion simulation. A modified plume-rise equation is included in dispersion simulation in order to consider momentum effect in an initial stage of plume rise resulting in an improved prediction by comparing with the experimental data. The LSM is validated by comparing with the prediction of an Eulerian Dispersion Model (EDM) and by the measured results of vertical profiles of mean concentration in the downstream of an elevated source in an atmospheric boundary layer. The LSM predicts accurate results especially in the vicinity of the source where the EDM underestimates the peak concentration by 40% due to inherent limitations of gradient diffusion theory. As a verification study, the LSM simulation of buoyant plume dispersions under a neutral and stable atmospheric condition is compared with a wind-tunnel experiment, which shows good qualitative agreements.

Keywords

References

  1. Anfossi, D., Ferrero, E., Brusasca, G., Tinarelli, G., Tampieri, F., Trombetti, F. and Grostra, U., 1992, 'Dispersion Simulation of a Wind Tunnel Experiment with Lagrangian Particle Models, 'Il Nuovo Cimento, Vol. 15C, pp. 140-158 https://doi.org/10.1007/BF02507609
  2. Anfossi, D., Ferrero, E., Brusasca, G., Marzorati, A. and Tinareli, G., 1993, 'A Simple Way of Computing Buoyant Plume Rise in Lagrangian Stochastic Dispersion Models,' Atmos. Environ., Vol. 27A, pp. 1443-1451 https://doi.org/10.1016/0960-1686(93)90130-Q
  3. Briggs, G. A., 1975, 'Lecture on Air Pollution and Environmental Impact Analysis,' American Meteorological Society, Boston, MO.
  4. Brost, R. A. and Wynaard, J. C., 1978, 'A Model Study of the Stably Planetary Boundary Layer,' J. Atmos. Sci., Vol. 35, pp. 1427-1440 https://doi.org/10.1175/1520-0469(1978)035<1427:AMSOTS>2.0.CO;2
  5. Counihan, J., 1975, 'Adiabatic Atmosphere Boundary Layers : A Review and Analysis of Data from the Period 1880~1972,' Atmos. Environ., Vol. 9, pp. 871-905 https://doi.org/10.1016/0004-6981(75)90088-8
  6. Craft, T. J., Launder, B. E. and Suga, K., 1997, 'Prediction of Turbulent Transitional Phenomena with a Nonlinear Eddy-Viscosity Model,' Int. J. Heat Fluid Flow, Vol. 18, pp. 15-28 https://doi.org/10.1016/S0142-727X(96)00145-2
  7. Detering, H. W. and Etling, D., 1985, 'Application of the E-${\varepsilon}$ Turbulence Model to the Atmospheric Boundary Layer,' Boundary-Layer Meteorol., Vol. 36, pp. 201-209 https://doi.org/10.1007/BF00123386
  8. Duynkerke, P. G., 1988, 'Application of the E-${\varepsilon}$ Turbulence Closure Model to the Neutral and Stable Atmospheric Boundary Layer,' J. Atmos. Sci., Vol. 45, pp. 865-880 https://doi.org/10.1175/1520-0469(1988)045<0865:AOTTCM>2.0.CO;2
  9. Etling, D., Reuss, J., Wamser, M., 1986, 'Application of a Random Walk Model to Turbulent Diffusion in Complex Terrain,' Atmos. Envion., Vol. 20, pp. 741-747 https://doi.org/10.1016/0004-6981(86)90188-5
  10. Huq, P. and Stewart, E. J., 199, 'A Laboratory Study of Buoyant Plumes in Laminar and Turbulent Crossflows,' Atmos. Environ., Vol. 30, pp. 1125-1135 https://doi.org/10.1016/1352-2310(95)00335-5
  11. Kim, K. C., Kim, S. G. and Kim, B. C., 1997, 'Pollutant Dispersion Behavior from Stack in Thermally Stratified Wind (II),' AFERC Research Report AFR-97-C04, Pohang University of Science and Technology, pp. 83-102
  12. Kim, H. G. and Lee, C. M., 1998, 'Pollutant Dispersion Over Two-Dimensional Hilly Terrain,' KSME Int. J., Vol. 12, No. 1, pp. 96-111 https://doi.org/10.1007/BF02946538
  13. Kim, H. G. and Patel, V. C., 2000, 'Test of Turbulence Models for Wind Flow over Terrain with Separation and Recirculation,' Boundary-Layer Meteorol., Vol. 94, pp. 5-21 https://doi.org/10.1023/A:1002450414410
  14. Lu, Q. Q., 1995, 'An Approach to Modeling Particle Motion in Turbulent Flows. I. Homogeneous, Isotropic Trubulence,' Atoms. Environ., Vol. 29, No. 3, pp. 423-436 https://doi.org/10.1016/1352-2310(94)00269-Q
  15. Monin, A. S. and Obukhov, A. M., 1954, 'Basic Regularity in Turbulent Mixing in the Surface Layer of the Atmosphere,' Trans. Geophys. Inst. Acad. Sci., U.S.S.R.., Vol. 24, pp. 163-187
  16. Raupach, M. R. and Legg, B. J., 1983, 'Turbulent Dispersion from an Elevated Line Soirce : Measurements of Wind-Concentration Moments and Budgets,' J. Fluid Mech., Vol. 136, pp. 111-137 https://doi.org/10.1017/S0022112083002086
  17. Thomson, D. J., 1987, 'Criteria for the Selection of Stochastic Models of Particle Trajectories in Turbulent Flow,' J. Fluid Mech., Vol. 180, pp. 529-556 https://doi.org/10.1017/S0022112087001940
  18. van Dop, H., Nieuwstadt, F. T. M. and Hunt, J. C. R., 1985, 'Random Walk Models for Particle Displacements in Inhomogeneous Unsteady Turbulent Flows,' Phys. Fluids, Vol. 28, pp. 1639-1653 https://doi.org/10.1063/1.864956
  19. Wills, G. E. and Deardorff, J. W., 1983, 'On Plume Rise Within a Convective Boundary Layer,' Atmos. Environ., Vol. 17, pp. 2435-2447 https://doi.org/10.1016/0004-6981(83)90068-9