• Title/Summary/Keyword: Dynamic signature

Search Result 100, Processing Time 0.02 seconds

Navier-Stokes Analysis of Pitching Delta Wings in a Wind Tunnel

  • Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.28-38
    • /
    • 2001
  • A numerical method for the assessment and correction of tunnel wall interference effects on forced-oscillation testing is presented. The method is based on the wall pressure signature method using computed wall pressure distributions. The wall pressure field is computed using unsteady three-dimensional full Navier-Stokes solver for a 70-degree pitching delta wing in a wind tunnel. Approximately-factorized alternate direction implicit (AF-ADI) scheme is advanced in time by solving block tri-diagonal matrices. The algebraic Baldwin-Lomax turbulence, model is included to simulate the turbulent flow effect. Also, dual time sub-iteration with, local, time stepping is implemented to improve the convergence. The computed wall pressure field is then imposed as boundary conditions for Euler re-simulation to obtain the interference flow field. The static computation shows good agreement with experiments. The dynamic computation demonstrates reasonable physical phenomena with a good convergence history. The effects of the tunnel wall in upwash and blockage are analyzed using the computed interference flow field for several reduced frequencies and amplitudes. The corrected results by pressure signature method agree well with the results of free air conditions.

  • PDF

On-line Signature Verification Using Fusion Model Based on Segment Matching and HMM (구간 분할 및 HMM 기반 융합 모델에 의한 온라인 서명 검증)

  • Yang Dong Hwa;Lee Dae-Jong;Chun Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.12-17
    • /
    • 2005
  • The segment matching method shows better performance than the global and points-based methods to compare reference signature with an input signature. However, the segment-to-segment matching method has the problem of decreasing recognition rate according to the variation of partitioning points. This paper proposes a fusion model based on the segment matching and HMM to construct a more reliable authentic system. First, a segment matching classifier is designed by conventional technique to calculate matching values lot dynamic information of signatures. And also, a novel HMM classifier is constructed by using the principal component analysis to calculate matching values for static information of signatures. Finally, SVM classifier is adopted to effectively combine two independent classifiers. From the various experiments, we find that the proposed method shows better performance than the conventional segment matching method.

SAFETY EVALUATION OF ROCK-FILL DAM

  • HoWoongShon;YoungChulOh;YoungKyuLee
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.2
    • /
    • pp.89-97
    • /
    • 2003
  • For safety evaluation of a rockfill dam, it is often necessary to investigate spatial distribution and dynamic characterization of weak zones such as fractures. For this purpose, both seismic and electric methods are adopted together in this research. The former employs the multichannel analysis of surface waves (MASW) method, and aims at the mapping of 2-D shear-wave velocity (Vs) profile along the dam axis that can be associated with dynamic properties of filled materials. The latter is carried out by DC- resistivity survey with a main purpose of mapping of spatial variations of physical properties of dam materials. Results from both methods are compared in their signature of anomalous zones. In addition, downhole seismic survey was carried out at three points within the seismic survey lines and results by downhole seismic survey are compared with the MASW results. We conclude that the MASW is an efficient method for dynamic characterization of dam-filling materials, and also that joint analyses of these two seemingly unrelated methods can lead to an effective safety evaluation of rock-fill dam.

  • PDF

A Study on Variant Malware Detection Techniques Using Static and Dynamic Features

  • Kang, Jinsu;Won, Yoojae
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.882-895
    • /
    • 2020
  • The amount of malware increases exponentially every day and poses a threat to networks and operating systems. Most new malware is a variant of existing malware. It is difficult to deal with numerous malware variants since they bypass the existing signature-based malware detection method. Thus, research on automated methods of detecting and processing variant malware has been continuously conducted. This report proposes a method of extracting feature data from files and detecting malware using machine learning. Feature data were extracted from 7,000 malware and 3,000 benign files using static and dynamic malware analysis tools. A malware classification model was constructed using multiple DNN, XGBoost, and RandomForest layers and the performance was analyzed. The proposed method achieved up to 96.3% accuracy.

Dynamic Pipe Hash Function (동적 파이프 해쉬 함수)

  • Kim, Hie-Do;Won, Dong-Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.4
    • /
    • pp.47-52
    • /
    • 2007
  • In this paper, we proposed a constrution that creates Dynamic Pipe Hash Function with a pipe hash function. To increase security lever, dynamic hash function take and additional compression function. Proposed hash function based on the piped hash function. Our proposed Dynamic Pipe Hash Function is as secure against multicollision attack as an ideal hash function. And it have advantage for a number of reasons because of variable digest size. For example, in digital signature protocol, If a user requires increased security by selecting a large key size, useing a dynamic hash function in a protocol make implementation much easier when it is mandated that the size of the digest by increased.

A Study on Advanced Dynamic Signature Verification System (개선된 동적 서명인증시스템에 대한 연구)

  • Kim, Jin-Whan;Cho, Jae-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.08a
    • /
    • pp.183-186
    • /
    • 2008
  • 본 연구에서는 전자펜으로 입력된 개인의 서명에 대하여 서명의 모양, 쓰는 속도, 필체 각도, 획 순서, 획 수 등의 다양한 동적인 정보를 비교/분석하여 진서명인지 모조서명인지를 검증하는 사용자인증 보안 기술인 동적 서명인증시스템의 성능을 평가하기 위하여 보다 객관적인 평가 기준을 제안하고, 성능 및 실험 결과를 분석하였다.

  • PDF

A Verification Method for Handwritten text in Off-line Environment Using Dynamic Programming (동적 프로그래밍을 이용한 오프라인 환경의 문서에 대한 필적 분석 방법)

  • Kim, Se-Hoon;Kim, Gye-Young;Choi, Hyung-Il
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.12
    • /
    • pp.1009-1015
    • /
    • 2009
  • Handwriting verification is a technique of distinguishing the same person's handwriting specimen from imitations with any two or more texts using one's handwriting individuality. This paper suggests an effective verification method for the handwritten signature or text on the off-line environment using pattern recognition technology. The core processes of the method which has been researched in this paper are extraction of letter area, extraction of features employing structural characteristics of handwritten text, feature analysis employing DTW(Dynamic Time Warping) algorithm and PCA(Principal Component Analysis). The experimental results show a superior performance of the suggested method.

Prohibiting internal data leakage to mass storage device in mobile device (모바일 단말에서 외부 저장 매체로의 불법 데이터 유출 방지 기법)

  • Chung, Bo-Heung;Kim, Jung-Nyu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.1
    • /
    • pp.125-133
    • /
    • 2011
  • According to proliferation of mobile devices, security threats have been continuously increased such as illegal or unintentional file transmission of important data to an external mass-storage device. Therefore, we propose a protection method to prohibit an illegal outflow to this device and implement this method. This method extracts signatures from random locations of important file and uses them to detect and block illegal file transmission. To get signatures, a target file is divided by extracting window size and more than one signatures are extracted in this area. To effective signature sampling, various extraction ways such as full, binomial distribution-based and dynamic sampling are implemented and evaluated. The proposed method has some advantages. The one is that an attacker cannot easily predict the signature and its extraction location. The other is that it doesn't need to modify original data to protect it. With the help of these advantages, we can say that this method can increase efficiency of easy-to-use and it is a proper way leakage prevention in a mobile device.

Preventing ELF(Executable and Linking Format)-File-Infecting Malware using Signature Verification for Embedded Linux (임베디드 리눅스에서 서명 검증 방식을 이용한 악성 프로그램 차단 시스템)

  • Lee, Jong-Seok;Jung, Ki-Young;Jung, Daniel;Kim, Tae-Hyung;Kim, Yu-Na;Kim, Jong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.6
    • /
    • pp.589-593
    • /
    • 2008
  • These days, as a side effect of the growth of the mobile devices, malwares for the mobile devices also tend to increase and become more dangerous. Because embedded Linux is one of the advanced OSes on mobile devices, a solution to preventing malwares from infecting and destroying embedded Linux will be needed. We present a scheme using signature verification for embedded Linux that prevents executallle-Infecting malwares. The proposed scheme works under collaboration between mobile devices and a server. Malware detection is delegated to the server. In a mobile device, only integrity of all executables and dynamic libraries is checked at kernel level every time by kernel modules using LSM hooks just prior to loading of executables and dynamic libraries. All procedures in the mobile devices are performed only at kernel level. In experiments with a mobile embedded device, we confirmed that the scheme is able to prevent all executable-Infecting malwares while minimizing damage caused by execution of malwares or infected files, power consumption and performance overheads caused by malware check routines.

Design and Implementation of DHCP Supporting Network Attack Prevention (네트워크 공격 방지를 지원하는 DHCP의 설계 및 구현에 관한 연구)

  • Yoo, Kwon-joeong;Kim, Eun-gi
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.747-754
    • /
    • 2016
  • DHCP(Dynamic Host Configuration Protocol) is a protocol for efficiency and convenience of the IP address management. DHCP automatically assigns an IP address and configuration information needed to run the TCP/IP communication to individual host in the network. However, existing DHCP is vulnerable for network attack such as DHCP spoofing, release attack because there is no mutual authentication systems between server and client. To solve this problem, we have designed a new DHCP protocol supporting the following features: First, ECDH(Elliptic Curve Diffie-Hellman) is used to create session key and ECDSA(Elliptic Curve Digital Signature Algorithm) is used for mutual authentication between server and client. Also this protocol ensures integrity of message by adding a HMAC(Hash-based Message Authentication Code) on the message. And replay attacks can be prevented by using a Nonce. As a result, The receiver can prevent the network attack by discarding the received message from unauthorized host.