• Title/Summary/Keyword: Dynamic neural network

Search Result 791, Processing Time 0.028 seconds

A Quality Evaluation System of a Handwriting String by Global and Local Features (지역특징과 지역특징을 통한 필기문자열의 품질평가시스템)

  • Kim Gye-Young
    • Journal of Internet Computing and Services
    • /
    • v.5 no.6
    • /
    • pp.121-128
    • /
    • 2004
  • This paper proposes a quality evaluation system of a handwriting string written by electronic pen. For the purpose of the system, this paper describes how to retrieve reference data from a database, how to evaluate the quality of a handwiting string using global and local features. Also, it explains how to optionally recognize a grade of a handwriting string at using global and how to diagnose stroke order at using local. The quality can be evaluated in the case of different language between reference and input by the system. Therefore, we expect that the system is very useful not only for training on handwriting but also for learning a language.

  • PDF

Time Series Forecast of Maximum Electrical Power using Lyapunov Exponent (Lyapunov 지수를 이용한 전력 수요 시계열 예측)

  • Choo, Yeongyu;Park, Jae-hyeon;Kim, Young-il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.171-174
    • /
    • 2009
  • Generally the neural network and the fuzzy compensative algorithm are applied to forecast the time series for power demand with a characteristic of non-linear dynamic system, but it has a few prediction errors relatively. It also makes long term forecast difficult for sensitivity on the initial condition. On this paper, we evaluate the chaotic characteristic of electrical power demand with analysis methods of qualitative and quantitative and perform a forecast simulation of electrical power demand in regular sequence, attractor reconstruction, time series forecast for multi dimension using Lyapunov exponent quantitatively. We compare simulated results with the previous method and verify that the purpose one being more practice and effective than it.

  • PDF

Malware Detection with Directed Cyclic Graph and Weight Merging

  • Li, Shanxi;Zhou, Qingguo;Wei, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3258-3273
    • /
    • 2021
  • Malware is a severe threat to the computing system and there's a long history of the battle between malware detection and anti-detection. Most traditional detection methods are based on static analysis with signature matching and dynamic analysis methods that are focused on sensitive behaviors. However, the usual detections have only limited effect when meeting the development of malware, so that the manual update for feature sets is essential. Besides, most of these methods match target samples with the usual feature database, which ignored the characteristics of the sample itself. In this paper, we propose a new malware detection method that could combine the features of a single sample and the general features of malware. Firstly, a structure of Directed Cyclic Graph (DCG) is adopted to extract features from samples. Then the sensitivity of each API call is computed with Markov Chain. Afterward, the graph is merged with the chain to get the final features. Finally, the detectors based on machine learning or deep learning are devised for identification. To evaluate the effect and robustness of our approach, several experiments were adopted. The results showed that the proposed method had a good performance in most tests, and the approach also had stability with the development and growth of malware.

The Relationship between Default Risk and Asset Pricing: Empirical Evidence from Pakistan

  • KHAN, Usama Ehsan;IQBAL, Javed
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.3
    • /
    • pp.717-729
    • /
    • 2021
  • This paper examines the efficacy of the default risk factor in an emerging market context using the Fama-French five-factor model. Our aim is to test whether the Fama-French five-factor model augmented with a default risk factor improves the predictability of returns of portfolios sorted on the firm's characteristics as well as on industry. The default risk factor is constructed by estimating the probability of default using a hybrid version of dynamic panel probit and artificial neural network (ANN) to proxy default risk. This study also provides evidence on the temporal stability of risk premiums obtained using the Fama-MacBeth approach. Using a sample of 3,806 firm-year observations on non-financial listed companies of Pakistan over 2006-2015 we found that the augmented model performed better when tested across size-investment-default sorted portfolios. The investment factor contains some default-related information, but default risk is independently priced and bears a significantly positive risk premium. The risk premiums are also found temporally stable over the full sample and more recent sample period 2010-2015 as evidence by the Fama-MacBeth regressions. The finding suggests that the default risk factor is not a useless factor and due to mispricing, default risk anomaly prevails in the Pakistani equity market.

Building a mathematics model for lane-change technology of autonomous vehicles

  • Phuong, Pham Anh;Phap, Huynh Cong;Tho, Quach Hai
    • ETRI Journal
    • /
    • v.44 no.4
    • /
    • pp.641-653
    • /
    • 2022
  • In the process of autonomous vehicle motion planning and to create comfort for vehicle occupants, factors that must be considered are the vehicle's safety features and the road's slipperiness and smoothness. In this paper, we build a mathematical model based on the combination of a genetic algorithm and a neural network to offer lane-change solutions of autonomous vehicles, focusing on human vehicle control skills. Traditional moving planning methods often use vehicle kinematic and dynamic constraints when creating lane-change trajectories for autonomous vehicles. When comparing this generated trajectory with a man-generated moving trajectory, however, there is in fact a significant difference. Therefore, to draw the optimal factors from the actual driver's lane-change operations, the solution in this paper builds the training data set for the moving planning process with lane change operation by humans with optimal elements. The simulation results are performed in a MATLAB simulation environment to demonstrate that the proposed solution operates effectively with optimal points such as operator maneuvers and improved comfort for passengers as well as creating a smooth and slippery lane-change trajectory.

Machine Learning of GCM Atmospheric Variables for Spatial Downscaling of Precipitation Data

  • Sunmin Kim;Masaharu Shibata;YasutoTachikawa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.26-26
    • /
    • 2023
  • General circulation models (GCMs) are widely used in hydrological prediction, however their coarse grids make them unsuitable for regional analysis, therefore a downscaling method is required to utilize them in hydrological assessment. As one of the downscaling methods, convolutional neural network (CNN)-based downscaling has been proposed in recent years. The aim of this study is to generate the process of dynamic downscaling using CNNs by applying GCM output as input and RCM output as label data output. Prediction accuracy is compared between different input datasets, and model structures. Several input datasets with key atmospheric variables such as precipitation, temperature, and humidity were tested with two different formats; one is two-dimensional data and the other one is three-dimensional data. And in the model structure, the hyperparameters were tested to check the effect on model accuracy. The results of the experiments on the input dataset showed that the accuracy was higher for the input dataset without precipitation than with precipitation. The results of the experiments on the model structure showed that substantially increasing the number of convolutions resulted in higher accuracy, however increasing the size of the receptive field did not necessarily lead to higher accuracy. Though further investigation is required for the application, this paper can contribute to the development of efficient downscaling method with CNNs.

  • PDF

Discrimination of neutrons and gamma-rays in plastic scintillator based on spiking cortical model

  • Bing-Qi Liu;Hao-Ran Liu;Lan Chang;Yu-Xin Cheng;Zhuo Zuo;Peng Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3359-3366
    • /
    • 2023
  • In this study, a spiking cortical model (SCM) based n-g discrimination method is proposed. The SCM-based algorithm is compared with three other methods, namely: (i) the pulse-coupled neural network (PCNN), (ii) the charge comparison, and (iii) the zero-crossing. The objective evaluation criteria used for the comparison are the FoM-value and the time consumption of discrimination. Experimental results demonstrated that our proposed method outperforms the other methods significantly with the highest FoM-value. Specifically, the proposed method exhibits a 34.81% improvement compared with the PCNN, a 50.29% improvement compared with the charge comparison, and a 110.02% improvement compared with the zero-crossing. Additionally, the proposed method features the second-fastest discrimination time, where it is 75.67% faster than the PCNN, 70.65% faster than the charge comparison and 38.4% slower than the zero-crossing. Our study also discusses the role and change pattern of each parameter of the SCM to guide the selection process. It concludes that the SCM's outstanding ability to recognize the dynamic information in the pulse signal, improved accuracy when compared to the PCNN, and better computational complexity enables the SCM to exhibit excellent n-γ discrimination performance while consuming less time.

Classification of Construction Worker's Activities Towards Collective Sensing for Safety Hazards

  • Yang, Kanghyeok;Ahn, Changbum R.
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.80-88
    • /
    • 2017
  • Although hazard identification is one of the most important steps of safety management process, numerous hazards remain unidentified in the construction workplace due to the dynamic environment of the construction site and the lack of available resource for visual inspection. To this end, our previous study proposed the collective sensing approach for safety hazard identification and showed the feasibility of identifying hazards by capturing collective abnormalities in workers' walking patterns. However, workers generally performed different activities during the construction task in the workplace. Thereby, an additional process that can identify the worker's walking activity is necessary to utilize the proposed hazard identification approach in real world settings. In this context, this study investigated the feasibility of identifying walking activities during construction task using Wearable Inertial Measurement Units (WIMU) attached to the worker's ankle. This study simulated the indoor masonry work for data collection and investigated the classification performance with three different machine learning algorithms (i.e., Decision Tree, Neural Network, and Support Vector Machine). The analysis results showed the feasibility of identifying worker's activities including walking activity using an ankle-attached WIMU. Moreover, the finding of this study will help to enhance the performance of activity recognition and hazard identification in construction.

  • PDF

Transformer-Based MUM-T Situation Awareness: Agent Status Prediction (트랜스포머 기반 MUM-T 상황인식 기술: 에이전트 상태 예측)

  • Jaeuk Baek;Sungwoo Jun;Kwang-Yong Kim;Chang-Eun Lee
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.436-443
    • /
    • 2023
  • With the advancement of robot intelligence, the concept of man and unmanned teaming (MUM-T) has garnered considerable attention in military research. In this paper, we present a transformer-based architecture for predicting the health status of agents, with the help of multi-head attention mechanism to effectively capture the dynamic interaction between friendly and enemy forces. To this end, we first introduce a framework for generating a dataset of battlefield situations. These situations are simulated on a virtual simulator, allowing for a wide range of scenarios without any restrictions on the number of agents, their missions, or their actions. Then, we define the crucial elements for identifying the battlefield, with a specific emphasis on agents' status. The battlefield data is fed into the transformer architecture, with classification headers on top of the transformer encoding layers to categorize health status of agent. We conduct ablation tests to assess the significance of various factors in determining agents' health status in battlefield scenarios. We conduct 3-Fold corss validation and the experimental results demonstrate that our model achieves a prediction accuracy of over 98%. In addition, the performance of our model are compared with that of other models such as convolutional neural network (CNN) and multi layer perceptron (MLP), and the results establish the superiority of our model.

Revolutionizing Brain Tumor Segmentation in MRI with Dynamic Fusion of Handcrafted Features and Global Pathway-based Deep Learning

  • Faizan Ullah;Muhammad Nadeem;Mohammad Abrar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.105-125
    • /
    • 2024
  • Gliomas are the most common malignant brain tumor and cause the most deaths. Manual brain tumor segmentation is expensive, time-consuming, error-prone, and dependent on the radiologist's expertise and experience. Manual brain tumor segmentation outcomes by different radiologists for the same patient may differ. Thus, more robust, and dependable methods are needed. Medical imaging researchers produced numerous semi-automatic and fully automatic brain tumor segmentation algorithms using ML pipelines and accurate (handcrafted feature-based, etc.) or data-driven strategies. Current methods use CNN or handmade features such symmetry analysis, alignment-based features analysis, or textural qualities. CNN approaches provide unsupervised features, while manual features model domain knowledge. Cascaded algorithms may outperform feature-based or data-driven like CNN methods. A revolutionary cascaded strategy is presented that intelligently supplies CNN with past information from handmade feature-based ML algorithms. Each patient receives manual ground truth and four MRI modalities (T1, T1c, T2, and FLAIR). Handcrafted characteristics and deep learning are used to segment brain tumors in a Global Convolutional Neural Network (GCNN). The proposed GCNN architecture with two parallel CNNs, CSPathways CNN (CSPCNN) and MRI Pathways CNN (MRIPCNN), segmented BraTS brain tumors with high accuracy. The proposed model achieved a Dice score of 87% higher than the state of the art. This research could improve brain tumor segmentation, helping clinicians diagnose and treat patients.