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Abstract: Although hazard identification is one of the most important steps of safety management 

process, numerous hazards remain unidentified in the construction workplace due to the dynamic 

environment of the construction site and the lack of available resource for visual inspection. To this end, 

our previous study proposed the collective sensing approach for safety hazard identification and showed 

the feasibility of identifying hazards by capturing collective abnormalities in workers’ walking patterns. 

However, workers generally performed different activities during the construction task in the workplace. 

Thereby, an additional process that can identify the worker’s walking activity is necessary to utilize the 

proposed hazard identification approach in real world settings. In this context, this study investigated the 

feasibility of identifying walking activities during construction task using Wearable Inertial Measurement 

Units (WIMU) attached to the worker’s ankle. This study simulated the indoor masonry work for data 

collection and investigated the classification performance with three different machine learning algorithms 

(i.e., Decision Tree, Neural Network, and Support Vector Machine). The analysis results showed the 

feasibility of identifying worker’s activities including walking activity using an ankle-attached WIMU. 

Moreover, the finding of this study will help to enhance the performance of activity recognition and hazard 

identification in construction. 
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1. INTRODUCTION 

The hazard identification is an important first step of safety management process and the visual 

inspection is the primary method of hazard identification in construction. However, the visual inspection 

has the limited performance in hazard identification because of the dynamic work environment of 

construction site [1] and limited resource for manual inspection [2]. Thereby, numerous hazards still 

remain as unidentified and present a risk of accidents in the construction site [3]. Our previous study [4] 

developed the hazard identification technique which analyzes worker’s gait patterns for hazard 

identification. The developed technique utilized collective sensing technique to combine the multiple 

workers’ gait abnormalities and the proposed approach showed a strong correlation (r>0.7) with the 

existence of hazard. Thereby, the previous study presented an opportunity of identifying hazard in the 

construction environment.  

However, hazard identification through the developed technique in our previous study [4] is available  

when workers are performing the walking activity. Specifically, the completion of gait cycle is essential 

for measuring the abnormality of the worker’s gait patterns. Considering that construction workers would 

have not only walking activity but also many different types of activities during construction tasks, 

activity classification is required to filter out movements from other activities to accurately measure the 

gait abnormality for the hazard identification. Thereby, high accuracy in classifying walking activity 
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provides the high chance of identifying hazard by capturing workers’ abnormal gait patterns. In this 

context, this study investigated the feasibility of identifying the walking activity during construction tasks 

using wearable inertial measurement units (WIMU). Since attaching a WIMU to the worker’s ankle is 

necessary for hazard identification approach, this study performed the activity classification using data 

from the ankle-attached WIMU. 

 In fact, achieving the high level of accuracy in activity classification through the ankle-attached WIMU 

is challenging because body movements during construction tasks do not closely related to the worker’s 

lower body movements. To increase the activity classification performance, this study added worker’s 

locational data in activity classification. The locational data were collected from ultra-wideband (UWB) 

localization system, which achieved less than 0.5m in tracking accuracy in the construction environment 

[5]. This study investigated the effectiveness of adding additional features from locational data in activity 

classification. Then, the performance of activity classification using existing machine learning algorithms 

was tested. The result of this study revealed an opportunity of classifying worker’s activities using an 

ankle attached WIMU and the UWB system. Also, the result of this study will help to develop an 

automated hazard identification system which enhances the safety of the construction site. 

The remaining sections of this paper are same as following. The research background will introduce 

previous literatures on hazard identification and activity classification in construction. The methodology 

section will explain about data collection in the laboratory and data processing steps for activity 

classification. Activity classification, discussion and conclusion sections will discuss about achieved 

results and its contributions toward the hazard identification. 

2. RESEARCH BACKGROUND 

2.1. Hazard Identification 

With the importance of hazard identification in safety management, several research has been 

conducted to increase the identification performance [6]. Given the fact that visual inspection is a typical 

approach of hazard identification, many of these studies focused on to increase the knowledge of the 

construction worker about hazardous conditions by safety training or other methods. Albert et al. [3] 

developed the maturity model to increase the performance of hazard identification and showed the increase 

of performance during the construction project. Sacks et al [7] introduced an approach using virtual 

reality and showed the effectiveness of safety training in the virtual environment for hazard identification. 

However, although previous studies showed the effectiveness of safety training for hazard identification, 

several limitations are remained due to the dynamic work environment and qualitative aspect of visual 

inspection. Also, visual interference during material handling may increase the difficulty of hazard 

identification in the construction workplace. 

As an alternative approach of hazard identification, our previous studies [4,8,9] proposed the gait/body 

movements based hazard identification approaches which quantified the change of gait/body movement 

patterns when workers meet hazardous conditions during the walking activity. These studies were 

motivated by the fact that human body responds to the changes of physical environment [10]. Thereby, 

hazard identification can be achieved by capturing such changes of the human body movement. However, 

magnitude and frequency of these changes are different depending on the subject and the environment. 

Thereby, our previous studies implemented the collective sensing approach which accumulated   changes 

of multiple workers’ movements depending on its occurring locations. With collective processing, our 

previous studies found a strong correlation between the abnormality of gait/movement patterns and the 

existence of hazard in ironwork environment. However, it still has remaining issues for an implementation 

to the construction workplace. As explained earlier, proposed hazard identification approach requires 

walking movements which are the completed gait cycles to measure the abnormality of gait patterns for 

hazard identification. Thereby, classifying the walking activity is essential step since construction tasks 

consist of different activities and postures. In this manner, this study tested the feasibility of activity 

classification using an WIMU sensor. 

2.2. Activity Classification 

In construction, activity classification has been studied to analyze the construction workforce (e.g., 

worker, equipment) for productivity measurement, training and safety management [11]. Most of the 
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activity classification studies utilized the data from inertial measurement units or accelerometer with 

machine learning algorithms. 

Joshua and Varghese [12] showed the feasibility of classifying masonry tasks using body attached 

accelerometer placed at the waist level.  This study is the first study which classified the worker’s 

activities in the construction domain. However, this study remained on classifying brick installation tasks 

in stationary position without consideration of other required activities, such as material transporting, 

during construction task.  

Cheng et al. [13] proposed an approach combining UWB and physiological status monitoring systems 

(PSM) for productivity measurement. This study introduced the productivity measurement framework 

which consists of activity zone identification, activity reasoning and productivity measurement. This study 

utilized the concept of task zone which was identified based on pre-defined area and the user’s locational 

data collected from UWB. Then, data from PSM sensor were used to classify worker’s activities by 

analysing worker’s physiological responses (e.g., posture). However, the previous study focused on the 

analysis of productivity rather than investigating and increasing the classification accuracy. Cheng et al. 

[14] also utilized the similar concept of model (i.e., combining the UWB and PSM) for classifying safe 

bending and unsafety bending postures for ergonomic analysis of the worker. However, the accuracy of 

identifying walking activity and task activity was also not fully investigated in the previous study.  

 Recently, Akhavian and Behzadan [11] introduced smartphone-based activity classification approach. 

This study attached a smartphone to the worker’s upper-arm area for data collection and classified 

different types of construction tasks while testing different machine learning algorithms (i.e., decision tree, 

artificial neural network, k-nearest neighbor, logistic regression and support vector machine). However, 

this study also has few limitations. This study remained on the use of worker’s movement data from 

smartphone rather than using or testing other types of available data, such as locational data, in activity 

classification. Also, the location of the smartphone may distract worker’s movements during material 

handling task in the construction site.  

Considering that additional sensor installation for activity classification would not be an appropriate 

way for our hazard identification approach, further study on the feasibility of activity classification using 

ankle attached WIMU sensor is necessary. In this manner, this study tested the feasibility of identifying 

activities during construction tasks using ankle attached IMU sensor. Also, this study investigated the 

usefulness of adding worker’s locational data in activity classification with different machine learning 

algorithms. 

3. METHODOLOGY 

3.1. Data collection 

The laboratory experiment was conducted for data collection while simulating the masonry work which 

consists of material pickup, material moving and brick installation at the task area. During an experiment, 

subject first pick up cement bricks from the material stockpile and moved these bricks to designed task 

areas. During moving activity, experiment subject can carry only two bricks from the material stockpile to 

the task area for each installation. At the task area, experiment subject asked to install bricks at the ground 

while bending their knee during installation. Experiment environment is shown in Fig 1.  

In this study, total four volunteer subjects participated in data collection. These experiment subjects 

repeated the installation process total 27 times to install bricks to three different task areas. For data 

collection, a WIMU (OPAL, APDM Inc) and a UWB tag (UBISENSE Inc) were attached to the subject’s 

ankle and a safety helmet respectively to collect the subject’s leg movements and locational data (See Fig 

2).  

The WIMU system wirelessly collected 3 axes of acceleration, angular velocity and magnetic field data 

with 128-Hz sampling frequency. The UWB system recorded X, Y, and Z coordinates of the subject’s 

location with 9-Hz sampling frequency. The WIMU and UWB systems shared their timing source (i.e., 

laptop) and both data were synchronized later based on the collected time stamp. Additionally, whole 

experiment processes were video-recorded and these video data were used as a reference for data labeling.. 
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Fig. 1. Data collection: experiment layout, material stockpile and experiment environment 
 

 

Fig. 2. Location of WIMU and UWB tag 

For data labeling, this study divided all performed activities into three different classes which are 

material pick up, material moving, and brick installation. (See Fig 3) For example, this study labeled 

material moving when subjects are having entire gait cycles during walking activity. Side steps and other 

posture changes before and after material pick up or material installation are labeled as material 

installation activity or material pick up activity. Thereby, material installation activity is labeled when 

subjects performed installation tasks or changed their posture or having side step for installation.  

 

Fig. 3. Three different types of activities during masonry task during experiment  
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3.2. Data processing and feature extraction 

After data collection, this study performed data processing steps which include low-path filtering and 

feature extraction for activity classification. This study applied the low-pass band filter with a cut-off 

frequency of 4 Hz to remove sensor noise of WIMU data since most of the human movement energy is 

located under 3Hz frequency [15].  Then, this study used a moving window sampling approach to extract 

features from WIMU data. This study sampled 64 IMU data as a single window which represent worker’s 

movement data during 0.5-second. Also, this study overlapped 50% of data window to increase the 

classification performance similar with the previous study [11]. With moving window sampling technique, 

this study extracted both time and frequency domain features from WIMU data and only time domain 

features from UWB data (See Table1). The wavelet analysis related features are not included in this study 

due to its  low performance in activity classification [16].  

Table 1. Extracted time and frequency domain features from WIMU and UWB data 

WIMU UWB 

Time Domain Frequency Domain Time Domain 

Mean, Standard Deviation, Max, 

Min, Correlation, Signal Vector 

Magnitude 

Spectral Entropy, 

Spectral Centroid 

Mean, Standard Deviation, Max, 

Min, Correlation, Moving Distance 

 

With 3 different axes of accelerations and 3 different axes of angular velocities from WIMU, total 44 

features are extracted. In feature extraction using UWB data, X, Y, and Z coordinates are used to extract 

feature through a moving window sampling technique with a 0.5-second window (4 UWB data samples). 

Additionally, distance between the first sample and the last sample of UWB data within a sampling 

window is also used as an additional feature which represents a maximum moving distance for each axis. 

However, the signal vector magnitude was not used since it does not mean anything with locational data. 

Thus, total 62 features (i.e., 44 features from WIMU and 18 features from UWB data) are extracted for 

activity classification.  

Through the feature extraction process, total 15,853 data samples (900 samples of material pick up, 

12,938 samples of material moving, and 2014 samples of material installation) from 4 subjects were 

combined into a dataset and this dataset was used for activity classification. Before performing the activity 

classification, data from our experiment is visualized in Fig 4. As designed, the material pick up and 

material installation activities are located near the material stockpile and three different work areas while 

material moving activity is widely distributed on the experiment site. 

 

Fig. 4. Data visualization of performed activities and corresponding locations  

3.3. Machine Learning Algorith 

This study tested three different well-known machine learning algorithms (i.e., decision tree, support 

vector machine, and artificial network) to classify worker’s activities (i.e., material pick up, material 

moving, and material installation). 
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The decision tree (DT) algorithm develops a decision tree model based on features and classes. The 

decision tree model consists of nodes, edges and leaves. The node relates with a feature that can effectively 

divide data based on its class. With a specific value of feature, data in the node are separated into child 

nodes and this process is repeated until data in the child node have only one class. These remained data 

then are classified based on the label of training data. The C4.5 algorithm [17] builds a decision tree based 

on information gain which  is the measurement unit of the performance on splitting data. The J48, java 

version of C4.5, was used in this study to build a decision tree classification model. 

The artificial neural network (ANN) algorithm consists of multiple layers and nodes which connected 

each other to mimic the structure of the human brain. The input layer, hidden layer and output layer have 

multiple nodes and every node in each layer are linked with all nodes in neighbor layers. The number of 

features is same as number of nodes in the input layer and the number of classes is same as the number of 

nodes in the output layer. Each link between nodes has a weight that represents the function for activity 

classification. During a training of ANN model, weights in the links are updated to minimize an error in 

the output layer. In this study, backpropagation algorithm is used to update weights between nodes. After 

training, activity classification is performed based on developed ANN model from backpropagation 

algorithm.      

The support vector machine (SVM) algorithm is one of the popular machine learning algorithms and it 

has been achieved the high performance in activity classification. The SVM algorithm is seeking the 

hyperplane that can best separate set of data into two classes. Specifically, the algorithm transforms set of 

data to the feature space using kernel function and identifies the decision boundary in this feature space. 

Then, classification is performed based on this decision boundary.  In case of multi-class classification, 

multiple decision boundaries are set up during training and each decision boundary is used for classifying 

each class. 

4. ACTIVITY CLASSIFICATION 

The activity classification was performed based on extracted features with different machine learning 

algorithms. The WEKA [18], a data mining software, was used for activity classification. All other 

computation processes in this study were performed in the MATLAB (R2016b, MATHWORKS). To 

investigate the effectiveness of adding locational data in activity classification, this study divided extracted 

features into two different datasets which are data from WIMU, and both WIMU and UWB. This study 

performed a 3-fold cross-validation process to investigate the generalized classification performance. The 

3-fold cross validation approach divided whole data samples to three different subsets while having an 

equal number of data samples and classes on each subset. Then, training and testing processes are 

repeated three times while changing training and testing subset samples.  

The classification accuracy using features from movement data (WIMU) is listed in Table 2. Among 

different machine learning algorithms, an ANN model achieved the highest classification accuracy 

(87.2%) while it also had the highest precision and recall rates. In this setup, the difference between the 

worst model and the best model was only 2% in accuracy. This result indicated that all tested machine 

learning algorithms have a similar performance in activity classification. 

Table 2. Activity classification results with movement data (WIMU) 
 

ML Algorithms 
Movement Data (WIMU) 

Accuracy Precision Recall 

DT 85.5% 0.85 0.86 

SVM 87.1% 0.85 0.87 

ANN 87.2% 0.85 0.88 
 

Additionally, this study tested the performance of activity classification using combined dataset which 

combined data from WIMU and UWB. (See Table 3) Same as previous analysis, an ANN model achieved 

the highest classification accuracy (91.5%). Also, all of machine learning algorithms showed the increased 

performance compared to the results when only using movement data. The amount of the increased 

accuracy by adding locational information were 5.9%, 2.4%, and 4.3% on DT, SVM and ANN algorithms 

respectively. Especially, a decision tree model, which showed the lowest performance when only using 

movement data, showed 5.9% performance increasing with locational information. The analysis results 
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revealed that adding location information in activity classification along with movement data is beneficial 

to increase the classification performance. 

Table 3. Activity classification results with combined data (WIMU + UWB) 

ML Algorithms 
Combined Data (WIMU + UWB) 

Accuracy Precision Recall 

DT 91.4% 0.91 0.91 

SVM 89.5% 0.89 0.90 

ANN 91.5% 0.91 0.92 

The details of classification results from an ANN model with two different datasets are shown in Table 4 and 

5. With movement data, the classification accuracy of material pick up was only 11.1%. However, the accuracy 

was significantly increased (70.6%) when adding locational data. This result indicated that movements during 

material pick up are similar with material moving and material installation. Thereby, locational information is 

important to differentiate such activities from our experiment data effectively. The similar increasing pattern was 

also observed on the classification of material installation. In material installation classification, 10.6% accuracy 

was increased by adding locational information. On the other hand, the classification performance of material 

moving task was slightly decreased (0.6%) when using combined dataset. However, overall classification results 

showed that adding locational data along with movement data was beneficial and it increased the classification 

performance from 2.4% to 5.9%. 

Table 4. Confusion matrix of activity classification with movement data (WIMU) 

ANN 

Movement Data (WIMU) 

Material Pick Up 

(Predicted) 

Material Pick Up 

(Predicted) 

Material Pick Up 

(Predicted) 

Material Pick Up 11.1% 55.0% 33.9% 

Material Moving 0.7% 96.2% 3.1% 

Material Installation 3.6% 30.7% 65.7% 

Table 5. Confusion matrix of activity classification with combined data (WIMU + UWB) 

ANN 

Movement Data (WIMU) 

Material Pick Up 

(Predicted) 

Material Pick Up 

(Predicted) 

Material Pick Up 

(Predicted) 

Material Pick Up 70.6% 29.2% 0.2% 

Material Moving 1.5% 95.6% 2.9% 

Material Installation 0.2% 24.7% 75.1% 

5. DISCUSSION 

In previous activity classification study [11], the accuracy of activity classification, which including material 

moving and material handling, was 78 to 88% with various machine learning algorithms. The previous study 

attached a smartphone on the upper-arm area for data collection which is one of the best locations to collect data 

for activity classification. Compared to the previous study, this study installed a WIMU to the subject’s ankle 

which is not a recommended location for collecting data for activity classification. However, introduced approach 

that using locational information in activity classification achieved higher classification accuracy (89.5% to 

91.5%).  

An additional advantage of using locational information in activity classification is that classification results 

can be easily plotted using locational data (See Fig 5). Thereby, additional knowledge about classification errors 

and corresponding locations can be visually investigated. For example, the most of misclassified material 

installation data (Red in Fig 5) were collected during material moving activity near task area. This advantage is 

beneficial to develop the better activity classification system. 
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Fig. 5. Data Visualization of Classification Errors and Corresponding Locations 

In order to collect location data in the construction site, installation of the location tracking system is essential.  

However, some of the existing applications, such as smartphone-based activity classification or our previous 

collective hazard identification approach [4] already have a sensor that can collect locational information (e.g., 

GPS sensor or location tracking system). Thereby, proposed activity classification process is already feasible in 

such applications. Therefore, proposed approach would be beneficial to have a better classification model and 

more understanding about the occurred error in activity classification. 

6. CONCLUSION 

This study investigated the performance of activity classification using data from ankle attached WIMU and 

UWB location tracking system. With collected data, this study utilized a moving window sampling technique to 

compute the time and frequency domain features from IMU and UWB data. The classification results showed an 

opportunity of identifying walking activity (i.e., material moving) as well as material pick and material 

installation activities during masonry work. For the hazard identification through gait analysis, further 

performance improvement or another filtering process would be necessary since most of the misclassifications 

from material pick up and material installation activities are related to the walking activity. However,  this study 

revealed the effectiveness of adding locational data in activity classification. The proposed approach will help to 

build a better activity classification system and the high classification accuracy will help to decrease false alarm in 

hazard identification while effectively filtering out other activities. Thereby, the result of this study help to develop 

an automated hazard identification system in construction. 
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