Acknowledgement
The authors would like to thank the associated editor and anonymous reviewers for their valuable comments and suggestions to improve the quality of this paper.
References
- Y. Q. Gao, A. Gray, H. E. Tseng, and F. Borrelli, A tube-based robust nonlinear predictive control approach to semiautonomous ground vehicles, Veh. Syst. Dyn. 52 (2014), 802-823. https://doi.org/10.1080/00423114.2014.902537
- Y. Q. Gao, T. Lin, and F. Borrelli, Predictive control of autonomous ground vehicles with obstacle avoidance on slippery roads, (Proceedings of the ASME 2010 Dynamic Systems and Control Conference, Cambridge, MA, USA), 2010, pp. 265-272. https://doi.org/10.1115/DSCC2010-4263
- Y. Rasekhipour, A. Khajepour, S. K. Chen, and B. Litkouhi, A potential field-based model predictive path-planning controller for autonomous road vehicles, IEEE Trans. Intell. Transp. Syst. 18 (2017), 1255-1267. https://doi.org/10.1109/TITS.2016.2604240
- M. H. Korayem, and S. R. Nekoo, The SDRE control of mobile base cooperative manipulators: Collision free path planning and moving obstacle avoidance, Robot. Auton. Syst. 86 (2016), 86-105. https://doi.org/10.1016/j.robot.2016.09.003
- M. Donatelli, C. Giannelli, D. Mugnaini, and A. Sestini, Curvature continuous path planning and path finding based on PH splines with tension, Comput.-Aid. Des. 88 (2017), 14-30. https://doi.org/10.1016/j.cad.2017.03.005
- C. Giannelli, D. Mugnaini, and A. Sestini, Path planning with obstacle avoidance by G1 PH quintic splines, Comput. Aid. Des. 76 (2016), 47-60. https://doi.org/10.1016/j.cad.2016.02.004
- J. W. Choi, R. E. Curry, and G. H. Elkaim, Curvature-continuous trajectory generation with corridor constraint for autonomous ground vehicles, (Proceedings of the 49th IEEE Conference on Decision and Control, Atlanta, GA, USA), 2010, pp. 7166-7171. https://doi.org/10.1109/CDC.2010.5718154
- P. Cao, Y. Hu, T. Miwa, Y. Wakita, T. Morikawa, and X. Liu, An optimal mandatory lane change decision model for autonomous vehicles in urban arterials, J. Intell. Transp. Syst. 21 (2017), 271-284. https://doi.org/10.1080/15472450.2017.1315805
- V. A. Butakov, and P. Ioannou, Personalized driver/vehicle lane change models for ADAS, I.E.E.E. Trans. Veh. Technol. 64 (2015), 4422-4431. https://doi.org/10.1109/TVT.2014.2369522
- J. Nilsson, M. Brannstrom, E. Coelingh, and J. Fredriksson, Lane change maneuvers for automated vehicles, IEEE Trans. Intell. Transp. Syst. 18 (2017), 1087-1096. https://doi.org/10.1109/TITS.2016.2597966
- J. Nilsson, M. Brannstrom, and E. Coelingh, Longitudinal and lateral control for automated lane change maneuvers, (Proceedings of the American Control Conference), Chicago, IL, USA, 2015, pp. 1399-1404. https://doi.org/10.1109/ACC.2015.7170929
- Y. G. Choi, K. I. Lim, and J. H. Kim, Lane change and path planning of autonomous vehicles using GIS KINTEX, (Proceedings of the 12th International Conference on Ubiquitous Robots and Ambient Intelligence, Goyang, Rep. Korea), 2015, pp. 163-166. https://doi.org/10.1109/URAI.2015.7358855
- L. Wang, X. Zhao, H. Su, and G. Tang, Lane changing trajectory planning and tracking control for intelligent vehicle on curved road, SpringerPlus 5 (2016), 1150. https://doi.org/10.1186/s40064-016-2806-0
- T. Yang, A. A. Asanjan, and M. Faridzad, An enhanced artificial neural network with a shuffled complex evolutionary global optimization with principal component analysis, Inform. Sci. 418-419 (2017), 302-316. https://doi.org/10.1016/j.ins.2017.08.003
- X. Y. Zhang, F. Yin, Y. M. Zhang, C. L. Liu, and Y. Bengio, Drawing and recognizing Chinese characters with recurrent neural network, IEEE Trans. Pattern Anal. Mach. Intell. 40 (2018), 849-862. https://doi.org/10.1109/TPAMI.2017.2695539
- R. Sennrich, B. Haddow, and A. Birch, Neural machine translation of rare words with subword units, (Proceedings of the of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)), Berlin, Germany, Aug. 2016, pp. 1715-1725. https://doi.org/10.18653/v1/P16-1162
- G. Saon, H. Soltau, and D. Nahamoo, Speaker adaptation of neural network acoustic models using i-vectors, (Proceedings of the IEEE Workshop on Automatic Speech Recognition and Understanding, Olomouc. Czech Rep.), 2013, pp. 55-59. https://doi.org/10.1109/ASRU.2013.6707705
- F. Yu, and X. Z. Xu, A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network, Appl. Energy 134 (2014), 102-113. https://doi.org/10.1016/j.apenergy.2014.07.104
- S. X. Wang, N. Zhang, L. Wu, and Y. Wang, Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method, Renew. Energy 94 (2016), 629-636. https://doi.org/10.1016/j.renene.2016.03.103
- A. Sharifian, M. J. Ghadi, S. Ghavidel, L. Li, and J. Zhang, A new method based on Type-2 fuzzy neural network for accurate wind power forecasting under uncertain data, Renew. Energy 120 (2018), 220-230. https://doi.org/10.1016/j.renene.2017.12.023
- H. Xue, Y. Bai, H. Hu, and H. Liang, Influenza activity surveillance based on multiple regression model and artificial neural network, IEEE Access 6 (2018), 563-575. https://doi.org/10.1109/ACCESS.2017.2771798
- T. A. al-Qutami, R. Ibrahim, I. Ismail, and M. A. Ishak, Virtual multiphase flow metering using diverse neural network ensemble and adaptive simulated annealing, Expert Syst. Appl. 93 (2018), 72-85. https://doi.org/10.1016/j.eswa.2017.10.014
- Q. H. Hai Tho, H. C. Phap, and P. A. Phuong, A solution applying the law on road traffic into A set of constraints to establish A motion trajectory for autonomous vehicle, Adv. Sci. Technol. Eng. Syst. J. 5 (2020), 450-456. https://doi.org/10.25046/aj050356
- United Nations, Law of the sea bulletin, No. 97, 2020. 9211338743.
- International Association of Oil and Gas Producers Geomatics guidance note number 7, part 2: Coordinate conversions and transformations including formulas, 2013.
- Q. H. Tho, H. C. Phap, and P. A. Phuong, Motion planning solution with constraints based on minimum distance model for lane change problem of autonomous vehicles, Math. Model. Eng. Problems 9 (2022), 251-260. https://doi.org/10.18280/mmep.090131
- W. Bin, X. Zhu, and J. Shen, Analysis of driver emergency steering lane changing behavior based on naturalistic driving data, J. Tongji Univ. 45 (2017), 554-561. https://doi.org/10.4271/2016-01-1872