• Title/Summary/Keyword: Dynamic Mode

Search Result 2,553, Processing Time 0.031 seconds

Dynamic analysis for complex structures using the improved component mode method (개선된 콤포넌트 모드법을 이용한 거대구조물의 동적해석)

  • 심재수;박명균
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.37-44
    • /
    • 1993
  • There are a lot of linear dynamic analysis methods for complex structures. Each method has advantages and shortcomings. Method of dynamic analysis for complex structure is selected considering characteristics of dynamic loading, computer facility available number of degree of freedem and accuracy of results. It is a main point of view to get economical results rather then accurate ones for analysis of general complex structures, Mode superposition method and direct integration method are generally used. However, the characteristics of load is not considered in mode superpositon method, the personal computer cannot be used in direct integration methods. To over-come these shortcomings, the component mode method incorporating Ritz algorithm updated is proposed to solve economically dynamic behavior of the structures. The purpose of study is a formulation of algorithm, and computer programing suitable for dynamic analysis of the complex structure in personal computer environment.

  • PDF

Dual mode LCD with dynamic mode of horizontal switching

  • Lee, Joong-Ha;Lee, Seong-Ryong;Kim, Tae-Hyung;Jhun, Chul-Gyu;Yoon, Tae-Hoon;Kim, Jae-Chang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.215-217
    • /
    • 2009
  • The authors propose a novel dual mode liquid crystal display (LCD) which has both dynamic and memory operating LCD modes. The mode uses a horizontal switching and bistable chiral splay nematic (BCSN) LCD. The proposed dual mode does not require pixeldivision and has a higher aperture ratio and resolution than the previously proposed dual mode. Experimental results of the memory and dynamic mode show a high contrast ratio of over 100:1.

  • PDF

A Study on the Dynamic Stress Intensity Factor of Orthotropic Materials(I) (직교 이방성체의 동적 응력확대계수에 관한 연구(I))

  • 이광호;황재석;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.313-330
    • /
    • 1993
  • The propagating crack problems under dynamic plane mode in orthotropic material is studied in this paper. To analyze the dynamic fracture problems in orthortropic material, it is important to know the dynamic stress components and dynamic displacement components around the crack tip. Therefore the dynamic stress components of dynamic stress field and dynamic displacement components of dynamic displacement field in the crack tip of orthotropic material under the dynamic load and the steady state in crack propagation were derived. When the crack propagation speed approachs to zero, the dynamic stress component and dynamic displacement components derived in this study are identical to the those of static state. In addition, the relationships between dynamic stress intensity factor and dynamic energy release rate are determinded by using the concept of crack closure closure energy with the dynamic stresses and represented according to physical properties of the orthotrophic material and crack speeds. The faster the crack velocity, the greater the stress value of stress components in crack tip. The stress value of the stress component of crack tip is greater when fiber direction coincides with the crack propagation than when fider direction is normal to the crack propagation.

Dynamic Analysis of Large Structures by Component Mode Method using Lanczos Algorithm and Ritz Vector (Lanczos알고리즘과 Ritz Vector를 이용한 Component Mode Method에 의한 거대구조물의 동적해석)

  • 심재수;황의승;박태현
    • Computational Structural Engineering
    • /
    • v.9 no.2
    • /
    • pp.115-120
    • /
    • 1996
  • The main concern of numerical dynamic analysis of large structures is to find an acceptable solution with fewer mode shapes and less computational efforts. Component mode method utilizes substructure technique to reduce the degree of freedom but have a disadvantage to not consider the dynamic characteristics of loads. Ritz Vector method consider the load characteristics but requires many integrations and errors are accumulated. In this study, to improve the effectiveness of component mode method, Lanczos algorithm is introduced. To prove the effectiveness of this method, example structure are analyzed and the results are compared with SAP90.

  • PDF

Dynamic Characteristics of ER Mounts with different operation modes (작동모드에 따른 ER마운트의 동특성 해석)

  • 홍성룡;최승복;정우진;함일배;김두기
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.819-829
    • /
    • 2000
  • Dynamic Characteristics of two different types of ER(electro-rheological)mounts ; flow and shear mode types are analyzed and compared. As a first step, field-dependent Bingham models of a chemically treated starch/silicone oil-based ER fluid are empirically identified under both flow and shear mode conditions. The models are them incorporated to the governing equation of the corresponding mode ER mount. For the reasonable comparison between two ER mounts, electrode parameters such as electrode gap are designed to be same. Dynamic stiffness and displacement transmissibility of each ER mount are evaluated in frequency domain with respect to the intensity of electric filed. In addition, vibration control capability of each ER mount is investigated in both frequency and time domains by employing the skyhook controller.

  • PDF

A Study on the Dynamic Stress Intensity Factor of Orthotropic Materials(II) A Study on the Stress Field, Displacement Field and Energy Release Rate in the Dynamic Mode III under Constant Crack Propagation Velocity (직교 이방성체의 동적 응력확대계수에 관한 연구 (II) 등속균열전파 속도하에서 동적모드 III 상태의 응력장, 변위장, 에너지해방률에 관한 연구)

  • 이광호;황재석;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.331-341
    • /
    • 1993
  • The propagating crack problems under dynamic antiplane mode in orthotropic material is studied in this paper. To analyze the dynamic fracture problems by theoretical method or experimental method in orthotropic material, it is important to know the dynamic stress intensity factor in the vicinity of crack tip. Therefore the dynamic stress field and dynamic displacement field with dynamic stress intensity factor of orthotropic material in mode III were derived. When the crack propagation speed approachs to zero, the dynamic stress components and dynamic displacement components derived in this paper are identical to the those of static state. In addition, the relationships between dynamic stress intensity factor and dynamic energy release rate are determined by using the concept of crack closure energy with the dynamic stresses and dynamic displacements derived in this paper. Finally, the characteristics of crack propagation are studied with the properties of orthotropic material and crack speed. The variation of angle .alpha. between fiber direction and crack propagating direction and crack propagation speed fairly effect on stress component and displacement component in crack tip. The influence of crack propagation speed on the speed on the stress and displacement is greater in the case of .alpha.=90.deg. than in the case of .alpha.=0.deg. and the faster the crack propagation speed, the greater the stress value and displacement value.

Dynamic Mixed Mode Crack Propagation Behavior of Structural Bonded Joints

  • Lee, Ouk-Sub;Park, Jae-Chul;Kim, Gyu-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.7
    • /
    • pp.752-763
    • /
    • 2000
  • The stress field around the dynamically propagating interface crack tip under a remote mixed mode loading condition has been studied with the aid of dynamic photoelastic method. The variation of stress field around the dynamic interface crack tip is photographed by using the Cranz-Shardin type camera having $10^6$ fps rate. The dynamically propagating crack velocities and the shapes of isochromatic fringe loops are characterized for varying mixed load conditions in double cantilever beam (DCB) specimens. The dynamic interface crack tip complex stress intensity factors, $K_1\;and\;K_2$, determined by a hybrid-experimental method are found to increase as the load mixture ratio of y/x (vertical/horizontal) values. Furthermore, it is found that the dynamically propagating interface crack velocities are highly dependent upon the varying mixed mode loading conditions and that the velocities are significantly small compared to those under the mode I impact loading conditions obtained by Shukla (Singh & Shukla, 1996a, b) and Rosakis (Rosakis et al., 1998) in the USA.

  • PDF

Effects of Flange Joint on the Dynamic Characteristics of the External Cylindrical Grinding Wheel Spindle (외경연삭 휠 주축의 진동특성에 미치는 플랜지 결합부의 영향)

  • Kim, Sun-Min;Ha, Jae-Hoon;Lee, Sun-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.118-125
    • /
    • 1999
  • In the grinding process, generally, the exciting forces with high frequency can be generated due to the wheel wear and the grinding process. As the grinding speed increases, the precise investigation about the wheel dynamic characteristics is required. Conventionally the wheel-spindle has been considered with lumped model in dynamic modeling. With this lumped model, the significant mode resulted from the shell mode of wheel can be readily ignored. This paper suggests the new analysis model which includes the shell mode of wheel in modeling the wheel-spindle assembly. Furthermore, based on the suggested model, the effects of the bolt tightening force and the taper tightening force on the dynamic properties are investigated by the finite element modal analysis and the experimental method. As a result of investigation, the shell mode vibration of wheel affects the dynamic characteristics of the spindle assembly. Also, the vibration modes of the spindle assembly are significantly affected by the joint tightening forces.

  • PDF

Proper Orthogonal Mode Analysis of AFM Microcantilevers in Dynamic Mode (동적모드 AFM 마이크로캔틸레버의 적합직교모드 해석)

  • Cho, Hong-Mo;Lee, Soo-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.606-611
    • /
    • 2007
  • Proper orthogonal decomposition (POD) is a method for extracting bases for modal decomposition from the ensemble of dynamic signals. Using the POD method, we analyzed the proper orthogonal modes (POMs) of AFM microcantilevers in dynamic mode operations such as Tapping Mode. The POMs and POVs (proper orthogonal values) were computed through MATLAB simulation for the 5-mode model of the microcantilever. We found that the POV portion of the higher POMs of the tapping microcanilever slightly increased in comparison with no tapping. This implies that the modal energy in the fundamental mode can be transferred to the higher modes during tapping.

  • PDF

Novel liquid crystal display device for memory mode and dynamic mode

  • Kim, Jae-Chang;Jhun, Chul-Gyu;Chen, Chao Ping;Lee, Seong-Ryong;Yoon, Tae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1525-1528
    • /
    • 2006
  • So far, monostable and bistable LCD modes have independently been researched and developed. We introduce a novel liquid crystal display device that and be operated ad memory mode ad well ad dynamic mode. This device has a unique texture of splay, ${\pi}$ twist and bend states with applied voltages and is operated as a memory mode or dynamic mode by selective switching of two states among them. We also demonstrate electro-optical characteristics of the transmissive dual mode.

  • PDF