• Title/Summary/Keyword: Dynamic Bayesian Networks

Search Result 38, Processing Time 0.025 seconds

Design of Time-varying Stochastic Process with Dynamic Bayesian Networks

  • Cho, Hyun-Cheol;Fadali, M.Sami;Lee, Kwon-Soon
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.543-548
    • /
    • 2007
  • We present a dynamic Bayesian network (DBN) model of a generalized class of nonstationary birth-death processes. The model includes birth and death rate parameters that are randomly selected from a known discrete set of values. We present an on-line algorithm to obtain optimal estimates of the parameters. We provide a simulation of real-time characterization of load traffic estimation using our DBN approach.

Inter-Factor Determinants of Return Reversal Effect with Dynamic Bayesian Network Analysis: Empirical Evidence from Pakistan

  • HAQUE, Abdul;RAO, Marriam;QAMAR, Muhammad Ali Jibran
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.3
    • /
    • pp.203-215
    • /
    • 2022
  • Bayesian Networks are multivariate probabilistic factor graphs that are used to assess underlying factor relationships. From January 2005 to December 2018, the study examines how Dynamic Bayesian Networks can be utilized to estimate portfolio risk and return as well as determine inter-factor relationships among reversal profit-generating components in Pakistan's emerging market (PSX). The goal of this article is to uncover the factors that cause reversal profits in the Pakistani stock market. In visual form, Bayesian networks can generate causal and inferential probabilistic relationships. Investors might update their stock return values in the network simultaneously with fresh market information, resulting in a dynamic shift in portfolio risk distribution across the networks. The findings show that investments in low net profit margin, low investment, and high volatility-based designed portfolios yield the biggest dynamical reversal profits. The main triggering aspects related to generation reversal profits in the Pakistan market, in the long run, are net profit margin, market risk premium, investment, size, and volatility factor. Investors should invest in and build portfolios with small companies that have a low price-to-earnings ratio, small earnings per share, and minimal volatility, according to the most likely explanation.

Parameter Learning of Dynamic Bayesian Networks using Constrained Least Square Estimation and Steepest Descent Algorithm (제약조건을 갖는 최소자승 추정기법과 최급강하 알고리즘을 이용한 동적 베이시안 네트워크의 파라미터 학습기법)

  • Cho, Hyun-Cheol;Lee, Kwon-Soon;Koo, Kyung-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.164-171
    • /
    • 2009
  • This paper presents new learning algorithm of dynamic Bayesian networks (DBN) by means of constrained least square (LS) estimation algorithm and gradient descent method. First, we propose constrained LS based parameter estimation for a Markov chain (MC) model given observation data sets. Next, a gradient descent optimization is utilized for online estimation of a hidden Markov model (HMM), which is bi-linearly constructed by adding an observation variable to a MC model. We achieve numerical simulations to prove its reliability and superiority in which a series of non stationary random signal is applied for the DBN models respectively.

Activity Recognition based on Multi-modal Sensors using Dynamic Bayesian Networks (동적 베이지안 네트워크를 이용한 델티모달센서기반 사용자 행동인식)

  • Yang, Sung-Ihk;Hong, Jin-Hyuk;Cho, Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.1
    • /
    • pp.72-76
    • /
    • 2009
  • Recently, as the interest of ubiquitous computing has been increased there has been lots of research about recognizing human activities to provide services in this environment. Especially, in mobile environment, contrary to the conventional vision based recognition researches, lots of researches are sensor based recognition. In this paper we propose to recognize the user's activity with multi-modal sensors using hierarchical dynamic Bayesian networks. Dynamic Bayesian networks are trained by the OVR(One-Versus-Rest) strategy. The inferring part of this network uses less calculation cost by selecting the activity with the higher percentage of the result of a simpler Bayesian network. For the experiment, we used an accelerometer and a physiological sensor recognizing eight kinds of activities, and as a result of the experiment we gain 97.4% of accuracy recognizing the user's activity.

Online Parameter Estimation and Convergence Property of Dynamic Bayesian Networks

  • Cho, Hyun-Cheol;Fadali, M. Sami;Lee, Kwon-Soon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.285-294
    • /
    • 2007
  • In this paper, we investigate a novel online estimation algorithm for dynamic Bayesian network(DBN) parameters, given as conditional probabilities. We sequentially update the parameter adjustment rule based on observation data. We apply our algorithm to two well known representations of DBNs: to a first-order Markov Chain(MC) model and to a Hidden Markov Model(HMM). A sliding window allows efficient adaptive computation in real time. We also examine the stochastic convergence and stability of the learning algorithm.

Estimation of Non-Gaussian Probability Density by Dynamic Bayesian Networks

  • Cho, Hyun-C.;Fadali, Sami M.;Lee, Kwon-S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.408-413
    • /
    • 2005
  • A new methodology for discrete non-Gaussian probability density estimation is investigated in this paper based on a dynamic Bayesian network (DBN) and kernel functions. The estimator consists of a DBN in which the transition distribution is represented with kernel functions. The estimator parameters are determined through a recursive learning algorithm according to the maximum likelihood (ML) scheme. A discrete-type Poisson distribution is generated in a simulation experiment to evaluate the proposed method. In addition, an unknown probability density generated by nonlinear transformation of a Poisson random variable is simulated. Computer simulations numerically demonstrate that the method successfully estimates the unknown probability distribution function (PDF).

  • PDF

Online Probability Density Estimation of Nonstationary Random Signal using Dynamic Bayesian Networks

  • Cho, Hyun-Cheol;Fadali, M. Sami;Lee, Kwon-Soon
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.109-118
    • /
    • 2008
  • We present two estimators for discrete non-Gaussian and nonstationary probability density estimation based on a dynamic Bayesian network (DBN). The first estimator is for off line computation and consists of a DBN whose transition distribution is represented in terms of kernel functions. The estimator parameters are the weights and shifts of the kernel functions. The parameters are determined through a recursive learning algorithm using maximum likelihood (ML) estimation. The second estimator is a DBN whose parameters form the transition probabilities. We use an asymptotically convergent, recursive, on-line algorithm to update the parameters using observation data. The DBN calculates the state probabilities using the estimated parameters. We provide examples that demonstrate the usefulness and simplicity of the two proposed estimators.

REVIEW OF VARIOUS DYNAMIC MODELING METHODS AND DEVELOPMENT OF AN INTUITIVE MODELING METHOD FOR DYNAMIC SYSTEMS

  • Shin, Seung-Ki;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.375-386
    • /
    • 2008
  • Conventional static reliability analysis methods are inadequate for modeling dynamic interactions between components of a system. Various techniques such as dynamic fault tree, dynamic Bayesian networks, and dynamic reliability block diagrams have been proposed for modeling dynamic systems based on improvement of the conventional modeling methods. In this paper, we review these methods briefly and introduce dynamic nodes to the existing reliability graph with general gates (RGGG) as an intuitive modeling method to model dynamic systems. For a quantitative analysis, we use a discrete-time method to convert an RGGG to an equivalent Bayesian network and develop a software tool for generation of probability tables.

Nonlinear Control of Network based Systems with Random Time Delays using Intelligent Algorithms (지능형 알고리즘을 이용한 랜덤 시간지연을 갖는 네트워크 기반 시스템의 비선형 제어)

  • Cho, Hyun-Cheol;Lee, Kwon-Soon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.660-667
    • /
    • 2007
  • 본 논문은 확률특성을 갖는 네트워크 기반 제어시스템(NCS; Networked Control Systems)을 위하여 동적 베이시안 네트워크(DBN; Dynamic Bayesian Networks)와 신경회로망 기법을 이용한 지능제어기법을 제안한다. 신경회로망은 시변 시간지연을 갖는 비선형 시스템의 실시간 오차를 보상하기 위한 제어기의 최적화에 적용된다. 모듈화 신경회로망이 구성되며 이것은 제어기의 파라미터를 출력한다 가장 간단한 DBN 구조인 마코브 체인(MC; Markov Chain)이 구성되며 NCS의 랜덤 관측값을 모델링에 적용되며 예측 제어기의 구성에 또한 사용된다. 제안한 제어기법은 위성시스템의 자세제어에 적용하여 컴퓨터 시뮬레이션을 통해 성능을 검증하였다.

Development of a Secure Routing Protocol using Game Theory Model in Mobile Ad Hoc Networks

  • Paramasivan, Balasubramanian;Viju Prakash, Maria Johan;Kaliappan, Madasamy
    • Journal of Communications and Networks
    • /
    • v.17 no.1
    • /
    • pp.75-83
    • /
    • 2015
  • In mobile ad-hoc networks (MANETs), nodes are mobile in nature. Collaboration between mobile nodes is more significant in MANETs, which have as their greatest challenges vulnerabilities to various security attacks and an inability to operate securely while preserving its resources and performing secure routing among nodes. Therefore, it is essential to develop an effective secure routing protocol to protect the nodes from anonymous behaviors. Currently, game theory is a tool that analyzes, formulates and solves selfishness issues. It is seldom applied to detect malicious behavior in networks. It deals, instead, with the strategic and rational behavior of each node. In our study,we used the dynamic Bayesian signaling game to analyze the strategy profile for regular and malicious nodes. This game also revealed the best actions of individual strategies for each node. Perfect Bayesian equilibrium (PBE) provides a prominent solution for signaling games to solve incomplete information by combining strategies and payoff of players that constitute equilibrium. Using PBE strategies of nodes are private information of regular and malicious nodes. Regular nodes should be cooperative during routing and update their payoff, while malicious nodes take sophisticated risks by evaluating their risk of being identified to decide when to decline. This approach minimizes the utility of malicious nodes and it motivates better cooperation between nodes by using the reputation system. Regular nodes monitor continuously to evaluate their neighbors using belief updating systems of the Bayes rule.