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Online Probability Density Estimation of Nonstationary
Random Signal using Dynamic Bayesian Networks

Hyun Cheol Cho, M. Sami Fadali, and Kwon Soon Lee*

Abstract: We present two estimators for discrete non-Gaussian and nonstationary probability
density estimation based on a dynamic Bayesian network (DBN). The first estimator is for off-
line computation and consists of a DBN whose transition distribution is represented in terms of
kernel functions. The estimator parameters are the weights and shifts of the kernel functions. The
parameters are determined through a recursive learning algorithm using maximum likelihood
(ML) estimation. The second estimator is a DBN whose parameters form the transition
probabilities. We use an asymptotically convergent, recursive, on-line algorithm to update the
parameters using observation data. The DBN calculates the state probabilities using the estimated
parameters. We provide examples that demonstrate the usefulness and simplicity of the two

proposed estimators.

Keywords: Dynamic bayesian networks, nonstationary signal, online estimation, probability

density function.

1. INTRODUCTION

Probability density function (pdf) estimation is an
important problem for many engineering applications
including pattern recognition, signal detection,
artificial intelligence, etc. Several parametric and
nonparametric techniques are available for pdf
estimation [1]. Parametric methods are the simplest to
estimate the parameters of a pdf of known form. A
Gaussian distribution is widely used as a parametric
density model to simplify statistical analysis. In many
practical applications, non-Gaussian distributions of
unknown form are encountered. In these applications
nonparametric methods, which are more suited to
problems where the form of the distribution is
unknown, are more useful. The simplest
nonparametric approach available is the histogram.
Unfortunately, the histogram is  inherently
discontinuous and requires a large amount of data to
obtain useful results. Another popular nonparametric
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method is the kernel based approach in which an
estimator is constructed using a set of kernel functions.
The best known kernel based approach is the Parzen-
window estimation [2] which uses Gausssian kernels.
For the best performance, an appropriate kernel
function and its parameter values are chosen for
specific data samples. However, the method is very
sensitive to parameter values and it is often difficult to
determine the optimal kernel. Thus, additional
computation, such as smoothing [3], is sometimes
required.

In recent years, advanced techniques have been
used for pdf estimation, including: soft computation
algorithms [4-7], machine learning [8-10], and
information theory [11-13], statistical inference [14],
[15], etc. Most of this work employed neural network
learning trained using a given data set. Although the
objective functions used are somewhat different,
learning is similarly accomplished by finding the
extremum of an information-based objective function.
Examples of the objective function are: differential
entropy, and the Kullback-Leibler function. Several
neural model are used, including: multilayered back-
propagation neural networks [4,6,8], the Self-
Organizing Map (SOM) [9,10,16], the sigmoidal
network model [5], and probability principal
component analysis (PPCA) [15,17]. More recently,
dynamic density estimation was developed based on
mixture of Gaussian distributions for autoregressive
processes in [18].

Most research to date has focused on oftline or
batch learning in which datasets are obtained from
actual processes or experimental simulations. In
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addition, most methodologies are only applicable to
Gaussian density functions and stationary statistics,
and do not incorporate information regarding temporal
causality for a dynamic system. Although the methods
above give excellent results for some applications,
they have their limitations that exclude their use in
others. Online estimation can eliminate many of these
drawbacks by adaptively updating the pdf for
stationary statistical systems [19]. However, online
implementation requires that the computational
burden be kept low by using a simple learning
formula. Unfortunately, most available approaches
cannot easily be adapted for online computation since
their estimation rule involves calculating the gradient
of an objective function.

We estimate unknown pdfs with unknown statistical
characteristics online using a DBN approach. A DBN
is a graphical reasoning model for dynamic systems to
statistically represent its temporal causality [20]. We
develop online parameter learning for our DBN
suitable avoiding the computationally costly gradient-
based framework. Thus, our proposed estimation is
recursively computed with a simple update rule. Two
pdf estimation methods are presented using a discrete
Markov Chain (MC) model, which is the simplest
DBN. It expresses a posterior probability in terms of
prior probabilities and transition probabilities. In the
first method we represent the transition probabilities
as a weighted sum of shifted kernel functions. We
then express the probability of feasible variables in
terms of prior probabilities. The optimal parameter
values in the estimator are determined via a learning
algorithm that maximizes the likelihood function
using gradient descent optimization. In the second
estimator, the posterior probability is alternatively
expressed in vector form in order to construct a simple
DBN whose parameters form the transition
distribution. We estimate the DBN parameters from a
given observation sequence and then compute the
posterior probability density. The asymptotic behavior
of the estimator is analytically investigated using a
stochastic convergence theorem.

The remainder of this paper is as follows: We
provide a brief review of kernel-based pdf estimation
and a discrete MC model in Sections 2 and 3
respectively. In Sections 4 and 5, we propose our
estimation approaches wusing a DBN  model.
Convergence analysis for the online estimation is
studied in Section 6 and a simulation example is
presented in Section 7. Finally, conclusion and future
work are given in Section 8.

2. KERNEL-BASED PROBABILITY
ESTIMATION

A kernel based estimate is typically a linear
combination of kernel (basis) functions of the form:

N
P(x) =Y a;h(x—x;, 3,), (1)

i=1

where x is a Nx1 data vector, P(x) is the probability of
x, ¢ is a Kernel function, and ¢; and f; are parameters.
Based on probability axioms, the kernel functions
must satisfy ¢ > 0 with

Jpadu=1 @

and the parameters ; must be positive. The values of
the parameters «; and f; determine the performance of
the estimator and must be chosen appropriately. A
simple method for choosing the parameters is to plot
several curves with different parameter values and
visually examine them to search for the best fit.
However, this approach is subjective, requires skill
and experience, and cannot be automated.

We use ML estimation [21] to determine the
optimal parameter values in (1). Assuming
independent data points x;, i = 1, ... , N, the objective
function is defined as

N
Ly(xla, f)=]TP(x). 3)

i=1

Taking the natural logarithm of (3), we obtain the log
likelihood

L(x|a, p) =In(L,)

N
=D InP(x;) “)

i=1l
N N
=§1n{ laj¢(x,- —X5 B

Jj=

To maximize likelihood, we minimize the following
objective function with respect to two parameter
vectors = [an - ay]” and S=[f - fu]"

N N
J =min —Zln{Zajqﬁ(xi —xj,ﬁj)} . 5)
S B

It is popular to use gradient descent optimization for
determining the two parameter vectors because of its
high initial convergence rate [21]. For gradient
descent, we express the update rules for the
parameters as

a4 1) =a; () - ©)
J
and
ﬁj(k+1>=ﬂ,~<k)—n%, ™)
J
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where £ is discrete time and 77 < 0 is the learning rate.
We expand the partial derivatives using the chain rule
as

oJ  oJ OP(x;)

da;  OP(x;) oa;

i¢jP(xi)

(®)

P(x; =%, ;)

and
o  oJ OP(x;)
oB; OP(x;) OB,

9
g [, s )
P(x;) | op; '

i#]

The parameter values are determined using the
recursions (6) and (7) with the derivatives expressed
as (8) and (9).

3. DYNAMIC BAYESIAN NETWORKS

In this section, we briefly review DBN modeling of
a MC for a random signal. MC models have been
popular in engineering and science for decades. The
primary reason is that many practical stochastic
systems can be represented by a MC. The basic
structure of a first-order MC is depicted in Fig. 1.
In Fig. 1, a random variable X(k) at discrete time &
with N distinct states is temporally dependant on its
state at time k1. The state probability p(X = {), i = 1,
-+, N in the model sequentially evolves. Based on the
Markov property [22], the joint probability of X(k) of
the model for a finite time interval £ = [0, 7] is given
by

T
pX(0),-+, X(T)) = p(X O] [ p(X ()| X (i - 1)),

i=1
(10)
where p(X(0)) € RY is the initial state probability and
the conditional probability represents a sequential
transition state for the variable. In practice, the initial
state probability is obtained from a specified random

Fig. 1. A simple DBN model with random variable .X.

distribution, while the conditional probability must be
estimated based on observations. The conditional
probability as a model parameter is defined as

ay:p(X(k)=l|X(k—1):_]),l,]:1,,N (11)

subject to the probability constraint

N
Dla;=1, i=1,..,N. (12)
i=1

4. DBN KERNEL-BASED DENSITY
ESTIMATION

In this section, we propose a new probability
estimation method using a kernel based approach and
a simple DBN model shown in Fig. 1. In this model,
the posterior probability of an Nx1 state vector X at k
is given by

N
Px; (k) = > PCx; () | x; (k = D)P(x; (k= 1)), (13)
i=1

where for simplicity, x{k) = {X(k)=/} and P(x,(k-1)) is
the prior probability of x; whose initial condition is
usually based on a subjective decision or random

distribution [20]. For specific values z;, € RY of x; in
(13), we have

N
PGy (k) = 3. PGy () 2,k = D)P(z;(k = 1). (14)
i=1

In (11), the transition probabilities are written as a
linear combination of kernel functions as in (1).
Substituting from (1) we have the posterior
probability is given by

NN
P(x;(k)) = Z{Z a;P(x— Zjaﬂj)}P(Zi(k -1).
i=1 | j=1

(15)
This posterior probability is updated for a random
vector X at time k& as depicted in Fig. 2.
As stated in Section 2, the parameter sets « and £ in
Fig. 2 are recursively adjusted via a learning

Fig. 2. Posterior probability update using kernel func-
tions.
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algorithm. The objective function for the learning
algorithm is given by

n=1

T
J =min {—zln{P(X(n»}}

T N| N
:rj}i}} ->.In z[Za,.jgzﬁ(xn—zj,ﬂj)]P(zi) )

n=l  |i=1] j=1

(16)
Using (6), (7), (8), and (9) of Section 2, the adjust-
ment rules of the parameters are obtained as

o (k+1) = o (k)

Yo (17)

—UE{P()C”) P(x, _Zj’ﬂj)P(Zi)}
and
Yo
ﬂj(k+1)=ﬁj(k)—ﬂgip(xn)
N oP(x, —z;,5;) 1®
n_“jrj

{;aﬁp(zi)_‘—‘“aﬂj '}

The following examples illustrate the use of our
kernel-based method for pdf estimation. In the first
example, we correctly estimate a Poisson pdf from
data. In the second example we estimate the pdf for
nonlinearly transformed Poisson data and compare the
results to those of the histogram approach.

Example 1-1: We estimate the discrete probability
vector of a non-Gaussian signal. We use (17) and (18)
with the Gaussian kernel function:

b(x —z,,B.) = ———exp G mz)” . (19)
n 7 \/ﬂﬁ] ﬂz

J

For simplicity, the prior probabilities of the values z; i
=1,...,N, in (15) are assumed equal, i.e., P(z;)=1/N .
First, we simulate the estimation of the Poisson
distribution:
2%
P(x=k)= eXp(—ﬂ)ﬁ,

(20)
where A is a parameter and k = 0, 1, ..., «. Fig. 3
shows N=100 Poisson distributed data samples for
=10 generated using the MATLAB® command
poissrad.

The initial values of « and S were randomly selected
as uniformly distributed in [0,1] with the learning rate
17=0.5. Recursive learning continued until a specified
error tolerance is reached. We define the error
function is the average absolute difference between a
reference probability p* and the estimated probability

18
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Fig. 3. Poisson random number (Example I-1).
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Fig. 4. Estimated probability (Example I-1).
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Fig. 5. Nonlinear transformation of Poisson distribu-
ted data.
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In the training simulation, 100 training data samples at
each time k were temporally generated. Fig. 4
illustrates simulation result of the estimated
probabilities along with the reference values. The plot
shows that the estimation errors are less than 0.01 at
all data point with an average error value of 0.0089.
Example 1-2: We nonlinearly transform the Poisson
random data of Example I-1. To simulate this scenario,
a random input is fed to a nonlinear system and the
probabilities of the system output are estimated. A
block diagram for this process is depicted in Fig. 5.
The random input is Poisson distributed with the same
parameters as Example I-1. Because the data is
nonlinearly transformed, the output probabilities are
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Fig. 6. Poisson random number (Example 1-2).
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Fig. 7. Estimated probability (Example I-2).

not Poisson and the form of the output distribution is
unknown. We define the nonlinear function in Fig. 5
as y = ¢ x’(k) where ¢ is constant and generate 500
random input values. The time history of the output is
shown in Fig. 6.

Training is accomplished as in Example I-1. For
comparison, we obtain an estimate of the pdf from the
data using the histogram method and the MATLAB
command hist. The simulation results are given in Fig.
7. Fig. 7 shows that our results are very similar to
those of the histogram approach.

S. ONLINE ESTIMATION OF PROBABILITY
DENSITY BY DBN

We present use of a DBN in pdf estimation in
Section 4, but it is hard to construct an online
estimation algorithm due to the gradient-type update
rule. This Section proposes a novel online pdf
estimation with a DBN whose structure is identical in
Section 4.

A linear state-space model with the posterior
probability vector as the state vector and with state
matrix 4 is given by

P(X(k+1)) = A(k)P(X (k)), (22)

where P(X(k)) = [PX(k)=1), - LPX(k=N)" is a
stochastic vector and A(k)=[a;(k)], i,j=1, -, N, is a
time-dependent transition matrix. As estimates of the
transition matrix are obtained from observations, the
state vector of probabilities is recursively updated.
The linear equation is relatively simple and the low
computational load makes online estimation feasible.

To derive the recursive estimation rule, we first
define the transition probability as

a; (k) = pmy; (k),

where p is a normalizing factor to satisfy the
constraint in (12), and my; is the time-average
likelihood of transition between the ith state at k£ and
the jth state at k—1. This parameter is recursively
computed to reflect the related transition density using
observation data. We express the parameter in the
recursive form:

i)jzl’...QNi (23)

k
my (k) = %Zla-,(n)

{%%m,-j(k%){%]cﬁ(k),

where ¢;(k) is a random variable chosen as zero or as
equal to a positive constant ¢. Specifically, if the
observation data at k£ and k-1 are X{k-1) = and X(k) =
i (or X(k) =i | X(k-1) =), then (k) = c, otherwise
ilk)=0,1ie.,
if X(k)=i given X(k-1)=
£(h) ={c, (ky=i gi (k=1)=j 25)

0, otherwise.

24)

The dynamic relationship for the posterior probability
in (22) is graphically modeled as a simple DBN as
shown in Fig. 8 where the dark circles are the two
observation states at k and k—1. Thus, for this case ¢;
is selected as ¢ based on the rule (25). All other
parameters ¢ are zero and are represented by dotted
lines in Fig. 8. As a result, the average likelihood m;; is
increased while other likelihoods are decreased.
Finally, we normalize the likelihoods to obtain the

Fig. 8. Update of parameter a; based on observations.
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new transition probability a;. All other entries of the
transition matrix 4 are similarly updated. The
estimated transition matrix is then used to update the
stochastic vector in (22). The estimation algorithm is
simple and efficient because of its recursive nature
which eliminates the need to calculate earlier
likelihoods. As illustrated by the following example,
the estimation algorithm is suited to a large data set
and real-time implementation.

Example II: This simulation example extends the
simulation scenario of Example I-1 in which we
generate 1000 nonstationary Poisson distributed data
with random mean in [2,4] using the MATLABO
command unidrnd. Fig. 9 shows the random data for
this example discretely ranging from 0 to 14. To
construct our pdf estimate, we set up 21 states in (22),
ie., P(X) = [P(X=0), - ,P(X=20)]" and selected the
random initial probability vector P(0) as uniformly
distributed. We ran our estimation algorithm under
these simulation conditions and plotted the trajectories
of the state probabilities as shown in Fig. 10. We
observe that the trajectories generally show large
oscillations for the first 200 data points, then small
sustained oscillations around a steady level. We infer
that the sustained oscillations are caused by the
nonstationary statistics of the observation data.

Random number

j
800
Sample number

Fig. 9. Nonstationary Poisson random data (Example
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Fig. 10. Estimated state probabilities (Example II).

6. CONVERGENCE PROPERTY OF THE
ESTIMATION

We study the asymptotic behavior of the proposed
estimation algorithm of Section 5. We show that the
estimator asymptotically converges under mild
assumptions. We formulate our parameter update rule
as a dynamic recursion and apply stability criteria for
discrete-time systems to evaluate its stability.

6.1. Related theorems

In this Section, several definitions and theorems
related to stochastic convergence are first introduced
for later use to prove stochastic convergence.

Definition 1 [21]: Let X{(k) be a scalar sequence of
random variables defined on a probability space Q.
We say that X(k) converges with probability one (or
strongly, almost surely, almost everywhere) to a
random variable X if and only if

PioeQ: lim X(k,0)=X(w);=1 (26)
k—w
. WPl
and we denote this by X(k) ——— X. 0

Definition 2 [21]: For a sequence of random
variables X on a probability space Q, X(k) converges
in probability to X, if, for £> 0,

lim P{| X(k)- X" |> &} =0. (27)
k—o
This statement is denoted by X (k)L>X ", O

These two types of convergence sometimes impose
tough requirements on a stochastic process by
constraining the behaviors of individual sample
trajectories. Convergence in mean square imposes
different constraints that relax these requirements.

Definition 3 [22]: A sequence of random variables
X(k) converges to X in a mean-squared sense, if

Jim E{(X(k)- X =o. (28)

0
Theorem 1 [21]: If a sequence of random variables
X(k) converges to X~ in mean square, then it converges
to X in probability.
Definition 4: Let F(k) be a sequence of probability
distribution function. If there is a distribution function
F'such that

lim F(k,X)= F(X) (29)

at every point X in which F is continuous, we say that
F(k) converges in distribution to F. If {X(k)} is a
sequence of random variables and {F(k)} is the
corresponding sequence of distribution functions, we
say that X(k) converges in distribution to X if there is a
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random variable X with distribution function F such
that F(k) converges in distribution to F. We write
X(k)—9 x, N

Corollary 1 [21,23]: Convergence with probability
one implies convergence in probability, but the
converse is not true. Convergence in mean square
implies convergence in probability, but the converse is
not true. Convergence in probability implies
convergence in distribution, but the converse is not
true. M

Because a direct proof of convergence in
probability or convergence with probability one is
often difficult, we typically prove convergence in
mean square, which by Theorem 1 implies
convergence in probability.

6.2. Convergence of the estimation
We rewrite the estimation rule in Section 5 as

my; (k +1) = a(kym; (k) + (k)G ; (k), (30)
a; (k) = pmy (k),

where time-varying parameters are given by
a(ky=(k+1) 7k,
plk)=k7".

Since ¢; = 1 or 0, we model it as a random variable
with Bernoulli distribution, i.e.,

1)

P& =6)=q(1-) ¥, ¢i=01  (32)
where
q=p(&y =1)e ). (33)

Recall that for the Bernoulli distribution, the mean
and mean square are

E()=E(*)=q. (34)

In the DBN model, the posterior probability of the
state variable is given by

pilk+=a p(k), (35)

where p(k+1) is ith element of the stochastic vector,
p(k) is a prior probability vector, and the parameter
vector a; = col{a;,,aiv}, i = 1,-, N. Substituting (30)
in (35), we have

T
pilk+1)=(pm; )p(k), (36)
where m; = col{my,, my}, i, j = 1, ,N. The
expression shows that the posterior probability is a
linear function of the estimate m e {m;,, m}, i, j =

1, .-, N. By Theorem 2, we can therefore examine the
asymptotic behavior of the posterior probability

through the asymptotic behavior of m. We prove mean

square convergence of m, which by Theorem 1 is

sufficient to conclude convergence in probability.

Thus, we show that p,(k+1) converges in probability.
Lemma 1: The sequence of the random variable m;;

in (30) asymptotically converges in mean-square to g.
Proof: We seek to prove that

]}i_rSOE{(my.(kﬂ)—q)z}:o, (37)

where g = E{{ }. Using (7), we expand the limit as

: i q : 2
lim £ - +
‘ 1 & , & 2 & 5
= lim E — Zgn +ZZ§n§z —'k—zgn +q
GRS el
1#n
(33)
For i.i.d. Bernoulli trials, the expression becomes
k(k-1
lim i+uq2 —24% +4% |=0. (39)
k—>0 k2 k2

C

Remark: From Definition 2 and Theorem 1, we
conclude that p{k+1) in (36) converges in probability.
Therefore, the estimator in the second equation of (30)
stochastically converges such that the state probability
vector of the DBN model is converges asymptotically.C

6.3. Stability of the online estimation

We discuss the stability of the time-varying
dynamic systems to our learning algorithm. The
estimation rules of (30) are rewritten in vector form as

m(k +1) = F(kym(k) + G(k)S (k), (40)
a(k)y=Cm(k),

2
where m, {, a € RV are nonnegative vectors and F, G,

2 2
C eRM N are the corresponding nonnegative
matrices. Note that F(k) and G(k) are time-varying
and diagonal with elements less than unity, expressed
by

F(k)=(k-1/k)]
Gk = (/)] .

N 1)

Similarly, C in (40) is a diagonal and nonnegative
matrix whose elements are less than unity.

Theorem 2 [24]: Consider an unforced linear
discrete time-varying system as x(k+1) = F(k)x(k). Its
solution vector is x(k) = @¢k.ko)x(ko), ko< k, where the
state-transition matrix §k,ko) = F(k)F(k-1)---F(ky). If a
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norm of the solution |x(k)|| - 0 as & — < for any
initial state x(ko), this system is asymptotically stable.
This is equivalent to the condition ||@(k,ko) || — O as &
— o, U

Lemma 2: The dynamic equation (40) is
asymptotically stable for any initial state m(ky) at
initial time k.

Proof: The state-transition matrix from kg to k for
(40) is

k ;- _
Bk k) = [H [%j]ljvz . [%)INZ . @)

where ky > 1 and &y << k. Applying a limit to (42), we
have

kg —1
lim ¢(k,ky) =| lim | =2 I,=0. 43
lim gk, ko) L%( p ﬂ 2 (43)
From Theorem 4, we conclude that the recursion (40)
is asymptotically stable. 0

7. SIMULATION EXAMPLE

We consider a first-order dynamic system with
random input and noise, and time-varying parameters
in {25] for our simulation study. The system model is
given by

Sk =a(k)d (k =)+ b(k)ulk) + w(k). (44)

This equation is a single-input-single-output system
model relating an input sequence u(k), an output
sequence {(k), and a random noise term a(k). In (44),
the density functions of the two time-varying

parameters a(k) and b(k), and the noise (k) are
defined as

v.(x)=1-14x-1|, xe][0,1],
7D =30-), xelo) (45)
Yo(x)=1, x€[0,1],

where a random variable x is uniformly distributed,
and u(k) ~ N(0,1). The initial values of the input and
output #(0)=1 and {0)=0, respectively. We adopt the
simulation environments of [25]. Fig. 11 illustrates
time-histories of the observations for the system. We
first define a discrete random variable for the output
sequence as

x6_={§|g”e[—5,—oo]}, xS_ :{§|§€[—4,—5)},
5 ={¢1¢el3,-4), x5 ={{[{e[-2-3)},
x2_ :{§|§E[_la_2)}’ Xf ={§I§E[O5_1)}y

x ={¢1< 2],
{C1¢e@3])}, x3={SI1¢e@4],
{C1¢e@5]), x5 ={CI{e5,x]}. (46)

We apply our estimation algorithm to this sequence
and plot the probability of each variable in Fig. 12.
Most of the curves are not stationary in the steady-
state region due to the nonstationay random nature of
the system. We also compare our results to those
obtained using the approach recently proposed in [18]
for the same dataset. The authors of [18] developed a
dynamic density estimator based on a Bayesian
nonparametric prior for a set of distributions which is
constructed by defining the distribution at any time
point as a Dirichlet process. For quantitative analysis,
we define the error as the logarithm of the norm of the
difference

e(k) = log|| p(X (k) - p(X (k)

{¢1¢ e,

5
X
x5

, (47

where p(X) is an estimation using the method of [18].
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Fig. 11. Observation sequence.
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Fig. 12. Probability estimation.
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Fig. 13. Logarithm error norm.

The error trajectory is plotted in Fig. 13. The error
trajectory shows that the logarithmic error
progressively decreases. Thus, the two estimates are
asymptotically identical.

8. CONCLUSION

We present a pdf estimation approach using a
simple DBN model for adaptive online estimation
given a large data set. Simulation examples illustrate
the good performance of the algorithm in online
computation. Future work will involve the application
of the algorithm to problems in signal processing,
pattern recognition and control.

REFERENCES

[1] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern
Classification, Wiley-Interscience Publication,
New York, 2001.

[2] E. Parzen, “On estimation of a probability
density function and mode,” Analysis of
Mathematical Statistics, vol. 33, pp. 1065-1076,
1962.

[3] B. W. Silverman, Density Estimation for
Statistics and Data Analysis, Chapman &
Hall/CRC, 1986.

[4] S. Fiori and P. Bucciarelli, “Probability density
estimation using adaptive activation function
neurons,” Neural Processing Letters, vol. 12, pp.
31-42,2001.

[5] A. Sarajedini, R. Hecht-Nielsen, and P. M. Chau,
“Conditional  probability density function
estimation with sigmoidal neural networks,”
IEEE Trans. on Neural Networks, vol. 10, no. 2,
pp- 231-238, 1999.

[6] Y. Baram and Z. Roth, “Forecasting by density
shaping using neural networks,” [EEE/IAFE
Proc. of Computational Intelligence for
Financial Engineering, pp. 57-71, 1995.

[71 A. Likas, “Probability density estimation using

artificial neural networks,” Computer Physics
Communications, vol. 135, no. 2, pp. 167-175,
2001.

[8] D. S. Modha and Y. Fainman, “A learning law
for density estimation,” IEEE Trans. on Neural
Networks, vol. 5, no. 3, pp. 519-523, 1994.

[9] H. Yin and N. M. Allinson, “Self-organizing
mixture networks for probability density
estimation,” IEEE Trans. on Neural Networks,
vol. 12, no. 2, pp. 405- 411, 2001.

[10] T. Kostiainen and J. Lampinen, “On the
generative probability density model in the self-
organizing map,” Neurocomputing, vol. 48, pp.
217-228, 2002.

[11] M. Strikanth, H. K. Kesavan, and P. H. Roe,
“Probability density function estimation using
the MinMax measure,” IEEE Trans. on Systems,
Man, and Cybernetics-Part C: Applications and
Reviews, vol. 30, no. 1, pp. 77-83, 2000.

[12] G. Miller and D. Horn, “Maximum entropy
approach to probability density estimation,”
Proc. of Int. Conf on Knowledge-Based
Intelligent Electronic Systems, vol. 1, pp. 225-
230, 1998.

[13] J. N. Kapur, G. Baciu, and H. K. Kesavan, “The
MinMax information measure,” Int. J. of System
Science, vol. 26, no. 1, pp. 1-12, 1995.

[14] K. Kokkinakis, “Exponent parameter estimation
for generalized Gaussian probability density
functions with application to speech modeling,”
Signal Processing, vol. 85, no. 9, pp. 1852-1858,
2005.

[15] C. Wang and W. Wang, “Links between PPCA
and subspace methods for complete Gaussian
density estimation,” [EEE Trans. on Neural
Networks, vol. 17, no. 3, pp. 789-792, 2006.

[16] T. Kohonen, “The self-organization map,” Proc.
of the IEEE, vol. 78, no. 9, pp. 1464-1480, 1990.

[17] M. E. Tipping and C. M. Bishop, “Probability
principle component analysis,” J. Roy. Statist.
Soc., Ser. B, vol. 21, no. 3, pp. 611-622, 1999.

[18] A. Rodriguez and E. T. Horst, “Dynamic density
estimation  with  financial  applications,”
http.//fip.stat.duke.edu/WorkingPapers/06-21.
pdf, 2006.

[19] C. M. Bishop, Neural Networks for Pattern
Recognition, Oxford University Press, 1995.

[20] K. Murphy, Dynamic Bayesian networks:
Representation, Inference and Learning, Ph.D.
Dissertation, UC Berkeley, 2002.

[21] J. M. Mendel, Lessons in Estimation Theory for
Signal  Processing, Communications, and
Control, Prentice Hall, New Jersey, 1995.

[22] A. Papoulis and S. U. Pillai, Probability,
Random Variables and Stochastic Processes,
MecGraw Hill, 2002.

[23] R. 1. Serfling, Approximation Theorems of



118 Hyun Cheol Cho, M. Sami Fadali, and Kwon Soon Lee

Mathematical Statistics, Wiley & Sons, New
York, 1980.

[24] W.J. Rugh, Linear System Theory, Prentice Hall,
1996.

[25] H. Wang, A. Wang, and Y. Wang, “Online
estimation algorithm for the unknown
probability density functions of random
parameters in auto-regression and exogenous
stochastic systems,” /EEE Proc.-Control Theory
Applications, vol. 153, no. 4, pp. 462-468, 2006.

Hyun Cheol Cho received a B.S. from
the Pukyong National University in
1997, the M.S. from the Dong-A
University, Korea in 1999, and the
Ph.D. from University of Nevada-
Reno, USA in 2006. He is currently a
Post-doc Researcher in the Dept. of
Electrical ~ Engineering, = Dong-A
University. His research interests are in
the areas of control systems, neural networks, stochastic
process, and signal processing.

M. Sami Fadali earned the B.S. in
Electrical Engineering from Cairo
University in 1974, an the M.S. from
the Control Systems Center, UMIST,
England, in 1977 and the Ph.D. from
the University of Wyoming in 1980.
He was an Assistant Professor of
Electrical Engineering at the Univer-
sity of King Abdul Aziz in Jeddah,
Saudi Arabia 1981-1983. From 1983-85, he was a Post
Doctoral Fellow at Colorado State University. In 1985, he
joined the Electrical Engineering Dept. at the University of
Nevada, Reno, where he is currently a Professor of
Electrical Engineering. In 1994 he was a Visiting Professor
at Oakland University and GM Research and Development
Labs. He spent the summer of 2000 as a Senior Engineer at
TRW, San Bernardino. His research interests are in the areas
of robust control, robust stability, fault detection, Bayesian
networks and fuzzy logic control.

Kwon Soon Lee received the B.S.
degree from Chungnam National
University, Daejeon, and the M.S.
degree in Electrical Engineering from
Seoul National University, Seoul,
Korea, in 1977 and 1981, respectively,
and the Ph.D. degree in Electrical and
Computer Engineering from Oregon
State University, USA, in 1990. He
joined the Department of Electrical Engineering, Dong-A
University, Busan, Korea, as an Assistant Professor from
1982 to 1994. Since October 1, 1994, he has been with
Division of Electrical, Electronic, and Computer in Dong-A
University, Busan, Korea, where he is currently a Professor.
He has authored or coauthored over 130 articles in archival
journals and conference proceedings. His research interests
include all aspects of port automation systems, intelligent
control theory, and application of immune algorithm, etc.
Prof. Lee is a responsible person of National Research
Laboratory nominated by the Korean Ministry of Science &
Technology, the Team Leader of New University for
Regional Innovation (NURI) in Dong-A University, and the
director of international cooperation department of Regional
Research Center (RRC) in Korea.




