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Abstract

In this paper, we investigate a novel online estimation algorithm for dynamic Bayesian network (DBN) parameters, given as conditional
probabilities. We sequentially update the parameter adjustment rule based on observation data. We apply our algorithm to two well known
representations of DBNs: to a first-order Markov Chain (MC) model and to a Hidden Markov Model (HMM). A sliding window allows
efficient adaptive computation in real time. We also examine the stochastic convergence and stability of the learning algorithm,
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1. Introduction

A dynamic Bayesian network (DBN) is a graphical model of
stochastic causal systems [1]. The model represents conditional
probabilities for random variables of system states based on
observation data. These probabilities are the DBN parameters
that must be optimally estimated for modeling accuracy and
reliable inference.

Although, there is no standard procedure for DBN parameter
learning, in general, have used Maximum
Likelihood (ML) and the Expectation-
Maximization (EM) algorithm [3]. The underlying scheme is to
maximize likelihood with respect to the parameter vector for
given observation data. These algorithms were successfully
utilized for acoustic modeling with finite observation data [4].
However, online learning using these algorithms is difficult
because of the heavy computational burden of the optimization
routine. Moreover, the EM algorithm can settle at a local
minimum and yield suboptimal parameters [3].

Applications of DBN include fault detection/diagnosis [5],
control systems [6], probability density estimation [7], etc.,
where stochastic modeling is warranted.

researchers
estimation [2]

Many of these
applications involve nonstationary statistics and a large data set.
DBN modeling of such systems requires online learning and
adaptation.

Surprisingly, few investigators have addressed online iterative
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learning. In [8], online learning algorithm for HMMs was
explored likelihood
maximization. The authors also incorporated the algorithm into
the EM framework for online EM learning of HMMs. In [9], a
recursive parameter estimate for HMMs based on extended least

using  gradient optimization for

squares and recursive state prediction error minimization was
developed. The authors proved that their algorithm is locally
convergent and more computationally efficient via an ordinary
differential equation model. In [10], the authors proposed an
online HMM estimation algorithm that re-estimates the ‘lifted’
parameters using past data history. More recently, in [11], the
voting EM algorithm which is an extension of EM method was
proposed for adaptive online learning of (static) Bayesian
networks. The learning rate of the dynamic estimation rule is
adaptively changed against the modeled environment. In [12],
EM and voting EM algorithms were compared by application to
a flood decision problem. The authors concluded the latter
method gave better result for online learning.

DBN
mathematical formulas and are not suitable for real time

Most algorithms for learning involve complex
implementation. In this paper, we explore an efficient learning
algorithm for DBN parameter estimation. First, we present an
online DBN parameter adjustment rule. Next, we apply our
algorithm to a MC model, then to a HMM. Because a long data
record is involved, there is a need to use a subset of the data for
on-line computation. In an adaptive environment, older data
points can be discarded and more recent data is sufficient. We
limit data length by introducing a sliding window approach with
an adaptive window size for flexible selection of the data
sequence. We also study the stochastic convergence and stability

properties of the proposed learning algorithm.
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The remainder of this paper is as follows: In Section 2, we
describe our proposed learning algorithm and apply it to a MC
and a HMM
simulation. In Section 3, we introduce the sliding window

structure respectively, including computer
learning algorithm. In Section 4, we consider the stochastic
convergence and stability of the learning algorithm. Finally,
conclusions and suggestions for future are given in Section 5.

2. Learning Algorithm

In this section, we derive the iterative equations of our
learning algorithm and apply them to two DBN examples. We
begin with the simplest possible DBN, namely a first-order MC.
Then we extend our algorithm to the more complex HMM.

2.1 First-order Markov Model

We consider a first-order MC model as a simple DBN, shown
in Fig. 1. Let X be a random variable with N distinct states
labeled by {1,--,N} in Fig. 1. The model parameters are the
conditional probabilities expressed by

a; =p(X()=jl| X(k=D=0, ije{l-,N} (1)

where k denotes discrete time. The parameters gy satisfy the
constraint

ia,.j =1 @)

=1

.

Fig. 1. A simple MC model.

Parameter learning is required to estimate the probabilities in
(1) based on sequential observation data. To derive our
parameter estimates, we first define the parameters in (1) as

a,(k)=amyk), ijefl,N} 3)

where « is a normalizing factor and m; is the average likelihood
and is defined as

m, (k) = %g@(m - [%] m, (k—1)+ [%] L) @
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where ¢ are selected as 1 or 0 based on the observation. If we
observe that X =i at k—1 and X = at k (or X(k) = | X(k—1) = i),
then {i(k) = 1, otherwise ;(k) = 0, i.e.

1’
Cij = 0,

Clearly, if £;(k)=1, then the corresponding average likelihood
my(k) increases while other average likelihoods decrease. The

if X=jgivenX =i

otherwise

®)

likelihood values are then normalized for the parameters a;; to
satisfy the constraint (2). This estimation procedure is simple to
realize in practice as illustrated in the following Example.

Example 1. We consider a nonstationary MC model with three
random states. An observation signal is randomly generated with
zero-mean uncorrelated Gaussian distribution, i.e. X ~ N(0, 0'2),
where o2 is uniformly distributed in [0,1]. Fig. 2 shows a
realization of the random observations sequence. We discretize
the continuous observations to three states:

x, ={X : X €(—0,-0.5)}
x, ={X : X €[-0.5,0.5]} 6)
x, ={X:X €(0.5,0)}

where x;, i = 1, 2, 3 is ith state for X. Since the model has three
states, the total number of parameters is nine (39). We simulate
the model and estimate the parameters using our estimation
algorithm. Fig. 3 shows the trajectories of the estimated
transition probabilitics. We observe that after about 300 data
points the responses approaches steady-state behavior. We
calculate the state probability vector p(X) with estimated
parameters and prior probability vector, i.e.

P, (k) = Zaﬁf?(x,-(k -, i=L-N 0]

We utilize the estimation in (7) to test the validity of the
estimates of a; compared to the result of Parzen estimation [13].
The latter algorithm is well-known for estimation of probability
density functions and is
performance for large data samples [14]. We simulated both

reported to have outstanding

methods using the observation data of Fig. 2 and compared their
results using the logarithm error

E(k) = log|p(X (k)) - p(X (K))| ®)

where p(X) is the Parzen estimate. The error trajectory is plotted
in Fig. 4. The error trajectory shows that the logarithmic error
Thus, the two

progressively decreases. estimates are

asymptotically identical.
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Fig. 3. Estimated transition probabilities.
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Fig. 4. Estimate error norms.

2.2 Online HMM Learning
We now extend the algorithm of Section 2.1 to a typical
HMM model, shown in Fig. 5.

Fig. 5. A typical HMM structure.

This model represents a first-order MC with a hidden state
variable X and a discrete observation alphabet ¥ = {y,-,yu}
whose symbols denote output values (vector quantization yields
a discrete alphabet for continuous systems). In Fig. 35, the
transition probability a; is equally defined as in the case of a
MC model. The conditional probability of observation o, when a
hidden state i is reached, is expressed by

b, =p(Y(k)=o0|X(k)=j), oefl, M} &)

The hidden state probability and observation probability
vectors are expressed based on (1) and (9) as
Xk)y=A4X(k-1) (10)

(11D
where 4 = {a;}, i, j =1, ,Nand B = {b,}, 0=1, -, M, are the
transition and observation matrices, respectively. Similarly, the

Y(k) = BX (k)

transition probability and observation probability are
respectively defined as
az/(k):amy(k)7 l,]E{l,,N} (12)
b,(ky=an, k), oefl,--- M} 13)
where
k-1 1
my(k)=[—k—]mi,(k—1)+(;]4,-(k) (14
k-1 1
n,, (k) =[T)n,,-g(k—1)+{;j§jo(k) (15)

and ¢ and ¢, are chosen as 0 or 1 as in Section 2.1. If we
observe Y(k) =y, given X(k) = j, then &, = 1, otherwise £, = 0.
However, the hidden variable X{(k) is not observed and we need
to determine its (hidden) state. Consider an illustration shown in
Fig. 6.
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k-1 k k

Fig. 6. N paths via hidden HMM variables.

Fig. 6 indicates that the right dark circle is related to
observation states at k& and the left dark one is assumed to be
selected at time k—1. Our problem at this point is how to select a
suitable hidden state, i.e. X’ (k) under this condition. From Fig. 6,
there are N paths between X' (k—1) and Y(k):

Path /: my; — ny, I=1,,N (16)

The likelihood value for each path is easily obtained by
multiplying the two likelihoods m; and ny, in Fig. 6. We define
this value as a cost function:

J(ky=myn,, =1 ,N 17

We select the hidden state X which maximizes the cost
functions in (17):

Path’ (k) = arg max J, (k) (18)
X5

Fig. 7. An optimal path j of a HMM.

This scheme is reasonable since the maximum likelihood
stands for the highest probability in the paths between the states
in Fig. 6. Following this step, the hidden state is changed from
X(k—1) = i to any hidden state X(k) = j, j € {1,~-,N}. Fig. 7
shows illustrations for this procedure.

From Fig. 7, when ;=1 and ¢;,=1, then the optimal path is X
=i—> X=j— Y=y, The likelihoods m; and n;, are increased
while all other parameters are unchanged. Consequentially, after
normalizing, the corresponding probabilities, i.e. a; and by, in
(12) and (13), are increased, but all other probabilities are
decreased. The probabilities are sequentially updated by
repeating this calculation. The computational load is low and the
algorithm is suitable for online learning. The application of the
algorithm to a HMM is summarized in Fig. 8. The following
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Example 2 demonstrates the validity of our algorithm for online

HMM parameter estimation.

1) Initialization (k=0)
m(ijy =0,
n(j,0) = 0;

m (i) = [0,1]; randomly unformed distribution
(i) = a m,(i); initial distributions of state variables
Old Node X" = arg maxz;
ie[1,N]
Dk=1~TT>w
Observation Y= y,; o€[1,M]
New Node Y =0

Jl = m(l’l) . }’I(Vl,O)
New Node X'= arg maxJ;;/=1,...,N

ie{l,N}
Update of transition probabilities, a;;
Fori=1~N
Forj=1~N
Ifi=0ld Node X" &j=New Node X'
Then din=1
Else dijH=0

m(i,)) = (k-VDk-m(ijy+(1/k) (i)
a(iy) = am(iy)
Update of observation probabilities, b;,

Forj=1~N
Foro=1~M
Ifj = New Node X" & k=New Node Y’
Then G,k =1
Else G,k =0
n(j,0) = (k-D/k-n(j,0)+(1/k) -{(j,0)
b(j,0) = an(j,o0)

Old Node X' « New Node X

Fig. 8. Summary of online HMM parameter learning.

Example 2: We adapt the stochastic system used in [15] to
demonstrate our algorithm. The system generates three discrete
states with {-1, 0, 1}, but this signal is corrupted with
uncorrelated nonstationary Gaussian noise, i.e. w ~ N(0,6%)
where ¢ is uniformly distributed in [0,0.5]. We observe the
output data for 1000 points, plotted in Fig. 9. We need two state
variables to construct a HMM based on prior information about
the system: the hidden state variable X €{x|, x, x3} and the
observation variable Y € {y1, y,, 3} as

X1=_l, x2=0, X3:1 (19)

and
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¥, ={Y:Y € (—0,-0.5)}
v, ={Y:Y e[-0.5,0.5]}
v, ={Y:Y €(0.5,x)}

(20)

We applied the proposed learning algorithm to this simulation
scenario. The results for the two conditional probabilities are
given in Fig. 10 and Fig. 11, respectively.

1.5

=
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Fig. 9. Noisy observation sequence.
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Fig. 10. Estimated transition probabilities.
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Fig. 11. Estimated observation probabilities.

Since the number of states for the hidden and observation
variables is three, the total number of the parameters is nine (3%)
and there are nine curves for each figure. The figures illustrate
transient behaviors until about 100 data points. Then the
dynamics slowly converge towards steady-state values.
However, we observe that two parameters continue to vary
throughout the simulation i.e. are nonstationary. Using the
estimated probabilities from Figs. 10 and 11, we calculate the

system output probability vector as

Y (k+1) = BUO[A(k) p(X (k)] @1)

The posterior estimated probability is linearly dependent on
the prior probability p(X), and on the entries of the matrices A(k)
and B(k) sequentially obtained via the learning procedure. We
similarly use the estimator (21) to evaluate our algorithm and
compare it to Parzen estimation. We define the logarithmic error
between these two estimations as

E(k) =log|| p(Y (k)) - p(¥ (k)| (22)

Fig. 12 shows the error trajectory for (22). From the figure we
observe that the logarithm of the deviations remains below —2
after a short transient period then continues dropping. The two
estimates are approximately equal after a few hundred points.

-6

-8

Logarithm estimate error norms

1% 200 400 600 800

time

1000

Fig. 12. Estimate error norms.

3. Sliding Window Approach

Online DBN learning generally involves large training data
sets with each data point successively arriving for a prolonged
time interval. However, a large data sequence is computationally
costly and not all data points are necessary for learning.
Typically, old data may be neglected and more recent data
retained. To embed this scheme in our DBN learning algorithm,
a sliding window is introduced in estimation rules (14) and (15).
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Update rules for these two likelihoods with a sliding window are
respectively given by

N, ~ 1
my(k)—[Nw+1jmi,(k 1)+[N Hj;,,(k) (23)

w

w

n,o(k)=[NN11]njo<k—1)+[N1+l);j ® 4

where N, is the window size. As shown in Fig. 13, the window
slides as k increases and old data are discarded.

Sliding window, N,

) T I
T L B —

\J
-

k+1

\j

Ly [T
L T =TT 1

k+2

\j

k-N-1 kN k-N+1 k1l kKl kR2
Fig. 13. A sliding window of DBNSs.

The update rules of (23) and (24) require the current time & to
be larger than the window size N, i.e. k£ > N,. Initially, it is
possible for the data set to be shorter than the window size k <
N, Therefore, we use the rules in (23) and (24) during the
transient state & < N, and for £ > N,, we apply the window
based learning.

3.1 Adaptive Window Size

In (23) and (24), the window size N,, is assumed constant for
simplicity. In practice, window size selection is a key issue for
flexible
computational load but does not use many data points. By

learning. Intuitively, a narrow window reduces
contrast, a wider window uses many data points but increases
the computational burden. Thus, a dynamic window whose size
is temporally adjusted is often required. Window adjustment is
dependent on the degree of data spread. For example, a narrow
window is suitable for a data sequence concentrated around a
specific value, whereas for widely spread data a wider window
is more effective. The degree of data spread is statistically
characterized by the variance. We base our adaptive window
size on the norm of the variances for the probability. We define
the window size adjustment rule as

N (k+1))=N_(k)+cn (25)

where ¢ is arbitrary positive value and 7 is a coefficient to be
selected based on the norm of the data variance. The coefficient
77 1is selected as
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1,; &, S"s"
n=1:0; &< ||s|| <g, (26)

—1; otherwise

where & and & are specified bounds. The norm of variance is

given by
@7

sl =225,
iy
where s;; is the expectation of the deviation between m(k) and
my(k=1)

s, = E{[m,(k)—m,(k-D)]'} 28

In summary, the norm of s is obtained by adding the square
deviations in (27) and is then used to update window size by the
rule (26). Window size is increased if the norm of the variance is
larger than an upper bound &, and decreased if the norm is less
than a lower bound &;. Otherwise, the window size is unchanged.

4. Convergence Analysis

In this Section, we investigate the convergence of the
proposed online learning for a large data sample (an infinite
number of observations). We apply asymptotic convergence
theorems to DBN parameter estimators. In addition, stability
theory of dynamic systems is introduced to the learning rule
viewed as a discrete time-variant system. First, recall the
adjustment rule from Section 2 as

m, (k +1) = a(kym, (k) + b(k)S, (k) 29)

8,(k)=am, (k) (30)

where a(k)=k"'(k-1)and b(k)=k™'. Since ¢; = 1 or 0, we
model it as a random variable with Bernoulli distribution, i.e.

P& =c)=¢"1-9), 5,=0]1 31

where ¢ = p(g; = 0) € (0,1). Recall that for the Bernoulli
distribution, the mean and mean square are

EC)= E¢H=q (32)

4.1 Stochastic Convergence of DBNs
We first state some useful theorems and definitions for large-
sample estimators.

Definition 1 For a sequence of random variables X on some
probability space, X(k) converges in probability to the random
variable X, if, for £> 0, lim P{| X(k)-X"|> &} =0. This formula
is simply denoted by X(k)——X" .1
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Definition 2 We say that a sequence of random variables X(k)
converges to X in  a  mean-squared  sense,
if }LrE)oE{(X(k)—X*)Z} =0. This is a specific definition of
convergence in rth mean (see page 93 in [2]). &

Theorem 1 If a sequence of random variables X(k) converges to
X in mean square, then it converges to X in probability.

Proof See page 97 in[2].1

Because a direct proof of convergence in probability is
difficult, we typically prove convergence in mean square, which
by Theorem 1 converges in probability. The next theorem
governs the convergence of a function of a random variable.

Theorem 2 Assume X(k) converges to X in probability or
X(k)—L2>X" and let g(’) be a continuous function, then
gX()—L—>g(X") ask =

Proof See page24in[16].1

In a MC, the posterior probability of the state variable is
given by

plk+D=ap(k) (33)

where p{k+1) is ith element of the stochastic vector, p(k) is a
prior probability vector, and the parameter vector g; =
col{ay;,,ay}, i,j=1,-,N. Substituting (30} in (33), we have

pk+1)=(am)p(k) (34

where m; = col{m;,-, my}, i, j = 1,--,N. The expression shows
that the posterior probability is a linear function of the estimate
m e{my,~, my}, ij=1,,N. By Theorem 2, we can therefore
examine the asymptotic behavior of the posterior probability
through the asymptotic behavior of m. We prove mean square
convergence of m, which by Theorem 1 is sufficient to conclude
convergence in probability. Thus, we show that p(k+1)
converges in probability.

Lemma 1 The sequence of the random variable my in (29)

asymptotically converges in mean-square 1o q.

Proof We seek to prove that

limE{(m,.j(k+1)—q)2}:0 (35)

k—w©

where g = E{{'}. Using (4), we expand the limit as

k 2 2q k
lim £ -—Z[Zg”} -2y, +q
k—oc part k i
(36)
1 k N k. k q k )
R PICEOICEA L WAL
e nel nel 1=l =1
l#n
For i.i.d. Bernoulli trials, the expression becomes .
: q k(k_l) 2 2 2|
}%[;2—4-_](2—(] -2¢°+q |=0m (€¥))

Remark From Lemma 1 and Theorem 1, we conclude that
pdk+1) in (33) converges in probability. Therefore, the
estimators in (30) stochastically converge such that the state
probability vector is correspondingly asymptotic for a MC
model.

4.2 HMM Convergence

We extend the MC convergence properties of Section 4.1 to a
HMM. From (10) and (11), we rewrite the observation
probability vector with respect to the two stochastic matrices
and the prior state probability vector as

p(Y (k) = B(k)A(k) p(X (k —1)) (38)

Note the entries ay, i,j=1,--,N and by, 0=1, --,M of 4 and B
are parameters of a HMM which are estimated via a learning
procedure. These estimators are computed using the same
learning rule as a MC and similarly converge in probability
according to Lemma 1, i.e. a,,(k)—")a,.j* and b, (k);">bm*.
Assuming that all entries of 4 and B converge in probability, we
have

A(ky—2—> 4", B(k)—L>B" (39)

Based on (39), we conclude the convergence of the random
observation vector of the HMM in (38).

Theorem 3 If random variables Xy and X, converge to X, " and
X," in probability, then (X,-X) also converges to XX in
probability.

Proof Seepage 26in[16]. 1

Theorem 3 governs the convergence of the product of two
convergent random sequences. By Theorem 3, the matrix
product B(k)A(k) in (38) converges in probability since 4 and B
respectively converge (see (39)). Moreover, from (38), p(¥(k)) is
a function of the product B(k)A(k) and by Theorem 2, p(Y)
converges in probability.
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4.3 Stability of the Online Learning

Next, we discuss the stability of the time-variant dynamic
systems to our learning algorithm. The estimation rules of (23)
and (24) are rewritten in vector form as

m(k +1) = F(k)m(k) + G(k){ (k) (40)

(k) = Cml(k) 41)

where m, ¢, 0 € RY are nonnegative vectors and F, G, C €
RV are the corresponding nonnegative matrices. Note
that F(k) = (k -1/k)I, and G(k)=(/k)!,, are time-variant and
diagonal with elements less than unity. Similarly, C in (41) is a
diagonal and nonnegative matrix whose elements are less than
unity. We first state stability results for both the zero-input
response and the zero-state response.

Theorem 4 [17]. Consider an unforced linear discrete time-
varying system as x(k+1) = F(k)x(k). Its solution vector is x(k) =
Ak ko)x(ky), ko> k, where the state-transition matrix §kky) =
F(k)F(k=1)---F(kg). If a norm of the solution |x(k)|| = 0 as k > «
Jor any initial state x(ky), this system is asymptotically stable.
This is equivalent to the condition | j(k.Jo)l| > 0 as k — co. B

Lemma 2 The dynamic equation (40) is asymptotically stable
for any initial state m(k,) at initial time k.

Proof We expand the state-transition matrix for the equation
in (40) as

kli-1 k
Pk, ky) = H(Ll_) Iy =(70]1Na ky <k (42)

i=k,

The limit as k — oo is

. e Ko :
lim gk, k) = [gg[ﬂ]lfv =0

From Theorem 4, we conclude that the recursion (40) is

43)

asymptotically stable. B

Next, we consider Bounded Input Bounded Output (BIBO)
stability. A system is said to be BIBO stable if and only if for
any bounded system input, the system output is bounded. A
necessary and sufficient condition for BIBO stability is given in
the following theorem.

Theorem 5 [17]. For a time-varying dynamic system x(k+1) =

Flk(k) + Gkyu(k) and y(k) = C(k)x(k), system is BIBO stable if
and only if there exists a positive constant d < «, such that
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S| Chth.nG) | <d

izko

(44)

We apply Theorem 5 to equations (40) and (41). By the
triangle inequality, in (44), the norm is rewritten by

| CR)p(k, DG || < | CR Il ok, DG (45)
where ||C(k)|| is less than one  for all k and
¢<k,i)G(i)=[f—.f[ﬂlN =[}H}]1 (46)

such that ||k,i)G(?)|| < 1 for all k and ||(k,))G(5)|| = O as k— .
Summing both sides of (46), we obtain

| chsknG)| < Ylcwflet.nG@ <k —k) @D

i~k

Designate the second term in (44) as

k
d(k) = Y |cil¢k.nG0) (49
i=kq
As k — oo, then d(k) converges to a finite value d < oo. Thus,
we finally have

zkj” C()p(k, )G | <d <o (49)

i=kg

We conclude that our system is BIBO stable.

5. Conclusions

DBN applications, other than off-line signal processing,
require an efficient online learning algorithm. We propose a
novel online approach to estimate DBN parameters using an
average likelihood for each parameter. The average likelihood is
sequentially calculated based on observation data. A windowing
approach is utilized for feasible implementation with large data
sets. In addition, we explore the use of an adaptive window size
that is dynamically adjusted according to data variance. We
evaluated its performance through numerical analysis of a HMM
with three states and satisfactory results were observed. Output
distributions computed using the HMM compared favorably to
Parzen pdf estimation.

We also studied the stochastic convergence and stability of
DBNs. We applied well known theorems of stochastic
convergences to demonstrate the asymptotic behavior for the
proposed learning algorithms. Our analytical results show that
the learning estimator asymptotically converges to an
equilibrium state. Similarly, by utilizing stability criteria we
analyzed the dynamic behavior of the parameter estimator.
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Potential applications for the proposed learning algorithm
include transmission control protocol (TCP) networks, and the
detection of a pulse position in pulse-position modulation (PPM).
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