• 제목/요약/키워드: Dynamic Bayesian Network

검색결과 66건 처리시간 0.022초

동적 베이스망 기반의 양손 제스처 인식 (Dynamic Bayesian Network based Two-Hand Gesture Recognition)

  • 석흥일;신봉기
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권4호
    • /
    • pp.265-279
    • /
    • 2008
  • 손 제스처를 이용한 사람과 컴퓨터간의 상호 작용은 오랜 기간 많은 사람들이 연구해 오고 있으며 커다란 발전을 보이고 있지만, 여전히 만족스러운 결과를 보이지는 못하고 있다. 본 논문에서는 동적 베이스망 프레임워크를 이용한 손 제스처 인식 방법을 제안한다. 유선 글러브를 이용하는 방법들과는 달리, 카메라 기반의 방법에서는 영상 처리와 특징 추출 단계의 결과들이 인식 성능에 큰 영향을 미친다. 제안하는 제스처 모델에서의 추론에 앞서 피부 색상 모델링 및 검출과 움직임 추적을 수행한다. 특징들간의 관계와 새로운 정보들을 쉽게 모델에 반영할 수 있는 동적 베이스망을 이용하여 두 손 제스처와 한 손 제스처 모두를 인식할 수 있는 새로운 모델을 제안한다. 10가지 독립 제스처에 대한 실험에서 최대 99.59%의 높은 인식 성능을 보였다. 제안하는 모델과 관련 방법들은 수화 인식과 같은 다른 문제들에도 적용 가능할 것으로 판단된다.

네트워크 기반 시간지연 시스템을 위한 리세트 제어 및 확률론적 예측기법을 이용한 온라인 학습제어시스템 (Online Learning Control for Network-induced Time Delay Systems using Reset Control and Probabilistic Prediction Method)

  • 조현철;심광열;이권순
    • 제어로봇시스템학회논문지
    • /
    • 제15권9호
    • /
    • pp.929-938
    • /
    • 2009
  • This paper presents a novel control methodology for communication network based nonlinear systems with time delay nature. We construct a nominal nonlinear control law for representing a linear model and a reset control system which is aimed for corrective control strategy to compensate system error due to uncertain time delay through wireless communication network. Next, online neural control approach is proposed for overcoming nonstationary statistical nature in the network topology. Additionally, DBN (Dynamic Bayesian Network) technique is accomplished for modeling of its dynamics in terms of casuality, which is then utilized for estimating prediction of system output. We evaluate superiority and reliability of the proposed control approach through numerical simulation example in which a nonlinear inverted pendulum model is employed as a networked control system.

동적 베이지안 네트워크를 이용한 델티모달센서기반 사용자 행동인식 (Activity Recognition based on Multi-modal Sensors using Dynamic Bayesian Networks)

  • 양성익;홍진혁;조성배
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권1호
    • /
    • pp.72-76
    • /
    • 2009
  • 최근 유비쿼터스 컴퓨팅에 대한 관심이 높아지면서 유비쿼터스 환경에서의 서비스를 위한 인간과 컴퓨터의 상호 작용, 특히 인간의 행동을 인식하는 연구가 활발히 진행되고 있다. 기존의 영상기반 연구와는 달리 모바일 환경에 적합하도록 가속도 센서, 생리신호 센서 등 다양한 센서들을 활용하여 사용자의 행동을 인식하는 기법이 연구되고 있다. 본 논문에서는 멀티모달 센서들을 통합하고 동적 베이지안 네트워크를 계층적으로 구성하여 사용자의 행동을 인식하는 방법을 제안한다. 연산량이 비교적 적은 베이지안 네트워크로 전반적인 사용자 행동을 추론하고 획득된 각 행동의 확률순으로 동적 베이지안 네트워크를 구성한다. 동적 베이지안 네트워크는 OVR(One-Versus-Rest) 전략으로 학습되며, 확률순으로 행동이 검증되어 임계치를 넘는 경우 선택된 행동보다 낮은 확률의 행동에 대한 동적 베이지안 네트워크를 검증하지 않아 추론 연산량을 줄인다. 본 논문에서는 가속도 센서와 생리적 신호 센서를 기반으로 총 8가지의 행동을 인식하는 문제에 제안하는 방법을 적용하여 평균적으로 97.4%의 분류 정확률을 얻었다.

Characterization and modeling of a self-sensing MR damper under harmonic loading

  • Chen, Z.H.;Ni, Y.Q.;Or, S.W.
    • Smart Structures and Systems
    • /
    • 제15권4호
    • /
    • pp.1103-1120
    • /
    • 2015
  • A self-sensing magnetorheological (MR) damper with embedded piezoelectric force sensor has recently been devised to facilitate real-time close-looped control of structural vibration in a simple and reliable manner. The development and characterization of the self-sensing MR damper are presented based on experimental work, which demonstrates its reliable force sensing and controllable damping capabilities. With the use of experimental data acquired under harmonic loading, a nonparametric dynamic model is formulated to portray the nonlinear behaviors of the self-sensing MR damper based on NARX modeling and neural network techniques. The Bayesian regularization is adopted in the network training procedure to eschew overfitting problem and enhance generalization. Verification results indicate that the developed NARX network model accurately describes the forward dynamics of the self-sensing MR damper and has superior prediction performance and generalization capability over a Bouc-Wen parametric model.

Online Parameter Estimation and Convergence Property of Dynamic Bayesian Networks

  • Cho, Hyun-Cheol;Fadali, M. Sami;Lee, Kwon-Soon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권4호
    • /
    • pp.285-294
    • /
    • 2007
  • In this paper, we investigate a novel online estimation algorithm for dynamic Bayesian network(DBN) parameters, given as conditional probabilities. We sequentially update the parameter adjustment rule based on observation data. We apply our algorithm to two well known representations of DBNs: to a first-order Markov Chain(MC) model and to a Hidden Markov Model(HMM). A sliding window allows efficient adaptive computation in real time. We also examine the stochastic convergence and stability of the learning algorithm.

Estimation of Non-Gaussian Probability Density by Dynamic Bayesian Networks

  • Cho, Hyun-C.;Fadali, Sami M.;Lee, Kwon-S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.408-413
    • /
    • 2005
  • A new methodology for discrete non-Gaussian probability density estimation is investigated in this paper based on a dynamic Bayesian network (DBN) and kernel functions. The estimator consists of a DBN in which the transition distribution is represented with kernel functions. The estimator parameters are determined through a recursive learning algorithm according to the maximum likelihood (ML) scheme. A discrete-type Poisson distribution is generated in a simulation experiment to evaluate the proposed method. In addition, an unknown probability density generated by nonlinear transformation of a Poisson random variable is simulated. Computer simulations numerically demonstrate that the method successfully estimates the unknown probability distribution function (PDF).

  • PDF

Online Probability Density Estimation of Nonstationary Random Signal using Dynamic Bayesian Networks

  • Cho, Hyun-Cheol;Fadali, M. Sami;Lee, Kwon-Soon
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권1호
    • /
    • pp.109-118
    • /
    • 2008
  • We present two estimators for discrete non-Gaussian and nonstationary probability density estimation based on a dynamic Bayesian network (DBN). The first estimator is for off line computation and consists of a DBN whose transition distribution is represented in terms of kernel functions. The estimator parameters are the weights and shifts of the kernel functions. The parameters are determined through a recursive learning algorithm using maximum likelihood (ML) estimation. The second estimator is a DBN whose parameters form the transition probabilities. We use an asymptotically convergent, recursive, on-line algorithm to update the parameters using observation data. The DBN calculates the state probabilities using the estimated parameters. We provide examples that demonstrate the usefulness and simplicity of the two proposed estimators.

Research on aging-related degradation of control rod drive system based on dynamic object-oriented Bayesian network and hidden Markov model

  • Kang Zhu;Xinwen Zhao;Liming Zhang;Hang Yu
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4111-4124
    • /
    • 2022
  • The control rod drive system is critical to the reactor's reliable operation. The performance of its control system and mechanical system will gradually deteriorate because of operational and environmental stresses, thus increasing the reactor's operational risk. Currently there are few researches on the aging-related degradation of the entire control rod drive system. Because it is difficult to quantify the effect of various environmental stresses and establish an accurate physical model when multiple mechanisms superimposed in the degradation process. Therefore, this paper investigates the aging-related degradation of a control rod drive system by integrating Dynamic Object-Oriented Bayesian Network and Hidden Markov Model. Uncertainties in the degradation of the control system and mechanical system are addressed by using fuzzy theory and the Hidden Markov Model respectively. A system which consists of eight control rod drive mechanisms divided into two groups is used to demonstrate the method. The aging-related degradation of the control rod drive system is analyzed by the Bayesian inference algorithm based on the accelerated life test data, and the impact of different operating schemes on the system performance is also investigated. Meanwhile, the components or units that have major impact on the system's performance are identified at different operational phases. Finally, several essential safety measures are suggested to mitigate the risk caused by the system degradation.

동적 베이지안 네트워크를 이용한 다중 카메라기반 축구 비디오 요약 (Summarization of Soccer Video based on Multiple Cameras Using Dynamic Bayesian Network)

  • 민준기;박한샘;조성배
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.567-571
    • /
    • 2009
  • 스포츠 경기의 비디오 중계는 생동감 있고 흥미로운 장면들을 시청자에게 제공해주기 위하여 여러 대의 카메라를 사용한다. 하지만 기존의 방송 시스템은 시청자에게 하나의 비디오로 편집된 장면만을 제공하기 때문에 시청자의 관심도를 고려하여 특정 장면을 요약해주거나 검색해주는 등의 지능형 방송 서비스가 어렵다. 본 논문에서는 여러 대의 카메라로 촬영한 축구경기 비디오를 요약 및 검색해주는 시스템을 제안한다. 이는 비디오에 주석으로 태깅되어있는 저수준 정보를 기반으로 하는 동적 베이지안 네트워크를 이용하여 슛, 크로스, 반칙, 세트플레이 등과 같은 주요장면을 추출하고, 해당 주요장면타입에 따라 자동으로 뷰를 선택한다. 따라서 제안하는 시스템은 사용자에게 주요장면 요약이나 선호하는 뷰의 선택기능을 제공하며, 사용자의 선호도를 고려할 경우 개인화 방송 서비스를 제공해줄 수 있다.

  • PDF

정서재활 바이오피드백을 위한 얼굴 영상 기반 정서인식 연구 (Study of Emotion Recognition based on Facial Image for Emotional Rehabilitation Biofeedback)

  • 고광은;심귀보
    • 제어로봇시스템학회논문지
    • /
    • 제16권10호
    • /
    • pp.957-962
    • /
    • 2010
  • If we want to recognize the human's emotion via the facial image, first of all, we need to extract the emotional features from the facial image by using a feature extraction algorithm. And we need to classify the emotional status by using pattern classification method. The AAM (Active Appearance Model) is a well-known method that can represent a non-rigid object, such as face, facial expression. The Bayesian Network is a probability based classifier that can represent the probabilistic relationships between a set of facial features. In this paper, our approach to facial feature extraction lies in the proposed feature extraction method based on combining AAM with FACS (Facial Action Coding System) for automatically modeling and extracting the facial emotional features. To recognize the facial emotion, we use the DBNs (Dynamic Bayesian Networks) for modeling and understanding the temporal phases of facial expressions in image sequences. The result of emotion recognition can be used to rehabilitate based on biofeedback for emotional disabled.