• Title/Summary/Keyword: Drug-delivery

Search Result 1,134, Processing Time 0.034 seconds

Drug Delivery Effect Using Biopolymer Chitosan Nanoparticles (생명고분자 키토산의 나노입자를 이용한 약물전달 효과)

  • Lee, Do Hun;Lee, Sang-wha;Yoo, In Sang;Park, Kwon-pil;Kang, Ik Joong
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.790-793
    • /
    • 2005
  • Recently, the interest in the extension of human life and personal health has been increased. Accordingly, many researchers in a pharmacy and a medical world have been making efforts to improve the sustained drug release property and the stability of drug release property in a body. Many biological researches have demonstrated that chitosan derivatives are effective, safe absorption enhancers that can improve the delivery efficiency of drug and vaccine, and they are suitable for controlled drug release because they have good stability, bio-compatibility, and biodegradability. In this study the experiment was performed in vivo by utilizing chitosan nanoparticles as a biopolymer to control drug delivery rate at an optimal temperature, pH, and concentration. It was observed that nanoparticles containing insulin could effectively control the blood glucose at a low level.

Comparison of Service Delivery Systems in Korea and Japan on Drug Addiction (약물중독에 대한 한국과 일본의 서비스 전달체계의 비교)

  • Cha, Myong-Hee;Jang, Cheol-Hun
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.12
    • /
    • pp.688-696
    • /
    • 2021
  • The purpose of this study is to provide implications for Korea's addiction measures by comparing the service delivery system for drug addiction in Korea and Japan. The method of research in this study is literature research. The collected data were analyzed using the Inter-Country Difference Act. According to the study, South Korea and Japan were supporting addicts and their families with a seemingly similar system for dealing with drug addiction. But the difference was also found. The difference between Korea and Japan on coping with drug addiction is, first, that Korea does not have an organization that only supports drug addiction. Second, continuous aid was insufficient even though it was an easy addiction to recur. As a suggestion to solve these problems, first, countermeasures for drug addiction alone are needed. Second, close and complementary links are needed within an integrated service delivery system. Third, persistence and appropriateness for treatment and rehabilitation are needed. Fourth, it suggested the need for preventive education contents.

Research progress on hydrogel-based drug therapy in melanoma immunotherapy

  • Wei He;Yanqin Zhang;Yi Qu;Mengmeng Liu;Guodong Li;Luxiang Pan;Xinyao Xu;Gege Shi;Qiang Hao;Fen Liu;Yuan Gao
    • BMB Reports
    • /
    • v.57 no.2
    • /
    • pp.71-78
    • /
    • 2024
  • Melanoma is one of the most aggressive skin tumors, and conventional treatment modalities are not effective in treating advanced melanoma. Although immunotherapy is an effective treatment for melanoma, it has disadvantages, such as a poor response rate and serious systemic immune-related toxic side effects. The main solution to this problem is the use of biological materials such as hydrogels to reduce these side effects and amplify the immune killing effect against tumor cells. Hydrogels have great advantages as local slow-release drug carriers, including the ability to deliver antitumor drugs directly to the tumor site, enhance the local drug concentration in tumor tissue, reduce systemic drug distribution and exhibit good degradability. Despite these advantages, there has been limited research on the application of hydrogels in melanoma treatment. Therefore, this article provides a comprehensive review of the potential application of hydrogels in melanoma immunotherapy. Hydrogels can serve as carriers for sustained drug delivery, enabling the targeted and localized delivery of drugs with minimal systemic side effects. This approach has the potential to improve the efficacy of immunotherapy for melanoma. Thus, the use of hydrogels as drug delivery vehicles for melanoma immunotherapy has great potential and warrants further exploration.

Effect of pH on Swelling Property of Hyaluronic Acid Hydrogels for Smart Drug Delivery Systems

  • Kim, Jin-Tae;Lee, Deuk-Yong;Kim, Young-Hun;Lee, In-Kyu;Song, Yo-Seung
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.256-262
    • /
    • 2012
  • Hyaluronic acid(HA) hydrogels were synthesized by immersing HA microbeads in phosphate buffered saline solutions having different pH levels to assess the effect of pH on the swelling ratio of HA hydrogels for smart drug delivery systems. No beads were formed when the HA solution(below pH 9) was crosslinked with divinyl sulfone(DVS) because DVS is a basic solution. The variation regarding the size of the microbead was not significant, suggesting that the bead size is not a function of pH(10 ~ 14). However, the pore size of the microbeads decreased with increasing pH from 10 to 14, leading to the surface smoothness and dense network as a result of higher crosslinking. The swelling ratio of hydrogels increased when the pH rose from 2(acidic) to 6(neutral). Afterwards, it decreased with further increasing pH(basic). The lower swelling ratio may be due to the lack of ionization of the carboxyl groups. On the other hand, a higher swelling ratio is likely due to the increased electrostatic repulsions between negatively charged carboxyl groups on different chains. Experimental results suggested that pH-responsive HA hydrogels can be applicable to the controlled drug delivery systems.

Iontophoretic Delivery of Vitamine C 2-Phosphate (이온토포레시스를 이용한 2-인산 비타민 C의 피부투과)

  • Kim, Su-Youn;Oh, Seaung-Youl
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.3
    • /
    • pp.201-207
    • /
    • 2004
  • In order to develop an optimum formulation for iontophoretic flux of vitamine C 2-phosphate (VCP), we have prepared three different hydrogels containing VCP, using carbopol, HPMC and poloxamer, and iontophoretic flux through hairless mouse skin from these hydrogels was carried out. Drug stability in phosphate buffer (PBS) solution (pH 7.4) with and without current application was studied. The effect of various factors, such as drug concentration, current density, and current profile on skin flux was also investigated. Stability study indicated that VCP in PBS (pH 7.4) solution was stable under the experimental condition, irrespective of the presence of current. Cathodal delivery increased the flux markedly, whereas the anodal and passive flux was negligible. Thus, cathodal delivery was used in all experiments. Flux increased as the drug concentration (2.5, 5.0, 7.5%) and current density $(0.2,\;0.4,\;0.6\;mA/cm^2)$ increased. Pulsed application of the current showed lower flux than constant current application. The results obtained suggest that VCP can be delivered into the skin and the amount delivered can be controlled by varying hydrogel, current density, drug concentration and current application profile.

Evaluation of the cytotoxicity of gold nanoparticle-quercetin complex and its potential as a drug delivery vesicle

  • Pak, Pyo June;Go, Eun Byeol;Hwang, Min Hee;Lee, Dong Gun;Cho, Mi Ju;Joo, Yong Hoon;Chung, Namhyun
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.2
    • /
    • pp.145-147
    • /
    • 2016
  • Recently, conjugates of medicinal herb-derived bioflavonoids, such as quercetin, and gold nanoparticles (GNPs) have gained attention as targeted drug delivery systems. In the present study, because quercetin is an important flavonoid with anti-cancer, anti-inflammatory, and anti-oxidant properties, GNP-quercetin complexes (GNPQs) were synthesized to investigate possible adverse effects such as cytotoxicity. We found that while quercetin was cytotoxic, GNPQs were not cytotoxic towards the RAW 264.7 and THP-1 cell lines. Therefore, GNPQs may serve as a potential drug delivery system for cancer treatment.

Preparation and Evaluation of Ketoconazole-loaded Solid-SNEDDS (Self-Nanoemulsifying Drug Delivery System) using Various Solidification Carriers (다양한 분말화 담체를 이용한 케토코나졸 함유 자가미세유화약물전달시스템의 제조 및 평가)

  • Da Young Song;Kyeong Soo Kim
    • Journal of Powder Materials
    • /
    • v.30 no.6
    • /
    • pp.493-501
    • /
    • 2023
  • This study aimed to develop a solid self-nanoemulsifying drug delivery system (solid-SNEDDS) to enhance the formulation of ketoconazole (KTZ), a BCS Class II drug with poor solubility. Ketoconazole, which is insoluble above pH 3, requires solubilization for effective delivery. This SNEDDS comprises oil, surfactant, and co-surfactant, which spontaneously emulsify in the gastrointestinal tract environment to form nanoemulsions with droplet sizes less than 100 nm. The optimal SNE-vehicle composition of oleic acid, TPGS, and PEG 400 at a 10:80:10 weight ratio was determined based on the smallest droplet size achieved. This composition was used to prepare liquid SNEDDS containing ketoconazole. The droplet size and polydispersity index (PDI) of the resulting liquid SNEDDS were analyzed. Subsequently, solid-SNEDDS was fabricated using a spray-drying method with solidifying carriers such as silicon dioxide, crospovidone, and magnesium alumetasilicate. The physicochemical properties of the solid-SNEDDS were characterized by scanning electron microscopy and powder X-ray diffraction, and its solubility, droplet size, and PDI were evaluated. In particular, the solid-SNEDDS containing ketoconazole and crospovidone in a 2:1 weight ratio exhibited significantly enhanced solubility, highlighting its potential for improved medication adherence and dissolution rates.

A Study for Identifying Current Drug Shortages of Public Hospitals and Improving Drug Shortage Information Delivery System (국공립병원 의약품 공급중단 현황 및 정보 전달체계 개선연구)

  • Kim, Daejin;Kwon, Kyenghee
    • YAKHAK HOEJI
    • /
    • v.57 no.2
    • /
    • pp.150-159
    • /
    • 2013
  • A study was performed to identify current drug shortages, assess impact of drug shortages on public hospitals and patients, and investigate needs of pharmacists for a drug shortage list. An e-mail survey was sent to the pharmacists of 13 national public hospitals. Total 61.5% of public hospitals has 10 or fewer drugs a year in short supply. Shortages involved mood drugs, anti-tumor drugs, analgesics, antibiotics and etc. in 2012. Among them 75.0% was prescription drugs and the other 25.0% was non-prescription drugs. 79.2% was domestic products and 20.8% was imported drugs. Only 12.5% was injections. Less than 3 pharmacists usually spent within 3 hours managing one drug shortage. Since a single item for a certain medicine may raise risk of drug shortages, it's needed to consider developing manuals, laying up medicine stocks and holding plural medicines for drug shortages in public hospitals. Main information resources of drug shortages are wholesalers or manufacturers. But the information appeared to be not only inadequate but also too late for appropriate activities. A survey of pharmacists revealed that overall 84.6% of respondents were in need of the drug shortage list. They expected it to be conducted to take proper measures for the drug shortage and to improve patient healthcare outcome and convenience. This study will contribute to improving public health by promoting stable supply of drugs and repairing the information delivery system.

Biomedical Applications of Silk Protein

  • Kweon, Hae-Yong;Cho, Chong-Su
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • Silk protein has been investigated by many researchers to apply to biomedical field. We reviewed biomedical applications of silk protein such as matrix of wound dressing and drug delivery system. Since silk fibroin/ poly (ethylene glycol) (PEG) semi-interpenetrating polymer networks showed good mechanical properties and wound healing phenomena, it can be used as wound dressing materials. Sericin nanoparticles pre- pared by conjugation with PEG and silk protein/ poloxamer mixture gel are expected to become a deliv- ery as matrix for hydrophobic drug.

  • PDF

Drug localization by magnetic fluids of $Cu_xFe_{1-x}OFe_2O_3$

  • Park, S. I.;Y. Q. Huang;Kim, C. O.;Kim, J. H.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.88-89
    • /
    • 2002
  • Studies on drug delivery using nano-size particles of magnetic fluid and hyperthermia have been performed by some researchers [1] because interests in human health increased according to industry development. However, there are few studies on systems which can accurately control delivery of the magnetic fluids to a diseased part of body [2]. In this study, Cu-added magnetic ferrofluid was prepared and the external magnetic field system was designed for drug localization.

  • PDF