DOI QR코드

DOI QR Code

Research progress on hydrogel-based drug therapy in melanoma immunotherapy

  • Wei He (College of Life Science, Northwest University) ;
  • Yanqin Zhang (Department of Nuclear Medicine, The First Affiliated Hospital of Air Force Military Medical University) ;
  • Yi Qu (Department of Xi'an Shunmei Medical Cosmetology) ;
  • Mengmeng Liu (College of Life Science, Northwest University) ;
  • Guodong Li (College of Life Science, Northwest University) ;
  • Luxiang Pan (State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University) ;
  • Xinyao Xu (College of Life Science, Northwest University) ;
  • Gege Shi (College of Life Science, Northwest University) ;
  • Qiang Hao (State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University) ;
  • Fen Liu (Department of Periodontology, Shenzhen Stomatological Hospital (Pingshan), Southern Medical University) ;
  • Yuan Gao (State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University)
  • Received : 2023.09.18
  • Accepted : 2023.11.15
  • Published : 2024.02.29

Abstract

Melanoma is one of the most aggressive skin tumors, and conventional treatment modalities are not effective in treating advanced melanoma. Although immunotherapy is an effective treatment for melanoma, it has disadvantages, such as a poor response rate and serious systemic immune-related toxic side effects. The main solution to this problem is the use of biological materials such as hydrogels to reduce these side effects and amplify the immune killing effect against tumor cells. Hydrogels have great advantages as local slow-release drug carriers, including the ability to deliver antitumor drugs directly to the tumor site, enhance the local drug concentration in tumor tissue, reduce systemic drug distribution and exhibit good degradability. Despite these advantages, there has been limited research on the application of hydrogels in melanoma treatment. Therefore, this article provides a comprehensive review of the potential application of hydrogels in melanoma immunotherapy. Hydrogels can serve as carriers for sustained drug delivery, enabling the targeted and localized delivery of drugs with minimal systemic side effects. This approach has the potential to improve the efficacy of immunotherapy for melanoma. Thus, the use of hydrogels as drug delivery vehicles for melanoma immunotherapy has great potential and warrants further exploration.

Keywords

Acknowledgement

The research of the National Natural Science Foundation of China is 82072658.

References

  1. Meng Z, Fang X, Fu B et al (2022) Tumor immunotherapy boosted by R837 nanocrystals through combining chemotherapy and mild hyperthermia. J Control Release 350, 841-856 https://doi.org/10.1016/j.jconrel.2022.09.009
  2. Lin A, Sahun M, Biscop E et al (2023) Acquired non-thermal plasma resistance mediates a shift towards aerobic glycolysis and ferroptotic cell death in melanoma. Drug Resist Updat 67, 100914
  3. Mathiyalagan R, Valappil AK, Yang DC et al (2022) Gene regulations upon hydrogel-mediated drug delivery systems in skin cancers-an overview. Gels 8, 560
  4. Gong HZ, Zheng HY and Li J (2019) Amelanotic melanoma. Melanoma Res 29, 221-230 https://doi.org/10.1097/CMR.0000000000000571
  5. Ahmed B, Qadir MI and Ghafoor S (2020) Malignant melanoma: skin cancer-diagnosis, prevention, and treatment. Crit Rev Eukaryot Gene Expr 30, 291-297 https://doi.org/10.1615/CritRevEukaryotGeneExpr.2020028454
  6. Rastrelli M, Tropea S, Rossi CR and Alaibac M (2014) Melanoma: epidemiology, risk factors, pathogenesis, diagnosis and classification. In Vivo 28, 1005-1011
  7. Carlino MS, Larkin J and Long GV (2021) Immune checkpoint inhibitors in melanoma. Lancet 398, 1002-1014 https://doi.org/10.1016/S0140-6736(21)01206-X
  8. Huang AC and Zappasodi R (2022) A decade of checkpoint blockade immunotherapy in melanoma: understanding the molecular basis for immune sensitivity and resistance. Nat Immunol 23, 660-670 https://doi.org/10.1038/s41590-022-01141-1
  9. Davis LE, Shalin SC and Tackett AJ (2019) Current state of melanoma diagnosis and treatment. Cancer Biol Ther 20, 1366-1379 https://doi.org/10.1080/15384047.2019.1640032
  10. Pang K, Shi ZD, Wei LY et al (2023) Research progress of therapeutic effects and drug resistance of immunotherapy based on PD-1/PD-L1 blockade. Drug Resist Updat 66, 100907
  11. Bowers EC, Hassanin A and Ramos KS (2020) In vitro models of exosome biology and toxicology: new frontiers in biomedical research. Toxicol In Vitro 64, 104462
  12. Ralli M, Botticelli A, Visconti IC et al (2020) Immunotherapy in the treatment of metastatic melanoma: current knowledge and future directions. J Immunol Res 2020, 9235638
  13. Correa S, Meany EL, Gale EC et al (2022) Injectable nanoparticle-based hydrogels enable the safe and effective deployment of immunostimulatory CD40 Agonist antibodies. Adv Sci (Weinh) 9, e2103677
  14. Dong X, Liang J, Yang A et al (2019) Fluorescence imaging guided CpG nanoparticles-loaded IR820-hydrogel for synergistic photothermal immunotherapy. Biomaterials 209, 111-125 https://doi.org/10.1016/j.biomaterials.2019.04.024
  15. Vishnubhakthula S, Elupula R and Duran-Lara EF (2017) Recent advances in hydrogel-based drug delivery for melanoma cancer therapy: a mini review. J Drug Deliv 2017, 7275985
  16. Mansoor H, Ong HS, Riau AK, Stanzel TP, Mehta JS and Yam GH (2019) Current trends and future perspective of mesenchymal stem cells and exosomes in corneal diseases. Int J Mol Sci 20, 2853
  17. Yang D, Zhang W, Zhang H et al (2020) Progress, opportunity, and perspective on exosome isolation - efforts for efficient exosome-based theranostics. Theranostics 10, 3684-3707 https://doi.org/10.7150/thno.41580
  18. Rastogi S, Sharma V, Bharti PS et al (2021) The evolving landscape of exosomes in neurodegenerative diseases: exosomes characteristics and a promising role in early diagnosis. Int J Mol Sci 22, 440
  19. Zhao L, Wang Y and Zhang Y (2021) The potential diagnostic and therapeutic applications of exosomes in druginduced liver injury. Toxicol Lett 337, 68-77 https://doi.org/10.1016/j.toxlet.2020.11.021
  20. Mo F, Jiang K, Zhao D et al (2021) DNA hydrogel-based gene editing and drug delivery systems. Adv Drug Deliv Rev 168, 79-98 https://doi.org/10.1016/j.addr.2020.07.018
  21. Ozay O, Ekici S, Baran Y, Aktas N and Sahiner N (2009) Removal of toxic metal ions with magnetic hydrogels. Water Res 43, 4403-4411 https://doi.org/10.1016/j.watres.2009.06.058
  22. Song HS, Kwon OS, Kim JH, Conde J and Artzi N (2017) 3D hydrogel scaffold doped with 2D graphene materials for biosensors and bioelectronics. Biosens Bioelectron 89, 187-200 https://doi.org/10.1016/j.bios.2016.03.045
  23. Lim HL, Hwang Y, Kar M and Varghese S (2014) Smart hydrogels as functional biomimetic systems. Biomater Sci 2, 603-618 https://doi.org/10.1039/C3BM60288E
  24. Chai Q, Jiao Y and Yu X (2017) Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels 3, 6
  25. Kikuchi IS, Cardoso GR, Dua K et al (2017) Hydrogel based drug delivery systems: a review with special emphasis on challenges associated with decontamination of hydrogels and biomaterials. Curr Drug Deliv 14, 917-925 https://doi.org/10.2174/1567201813666161205130825
  26. Naahidi S, Jafari M, Logan M et al (2017) Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv 35, 530-544 https://doi.org/10.1016/j.biotechadv.2017.05.006
  27. Sun Z, Song C, Wang C, Hu Y and Wu J (2020) Hydrogel-based controlled drug delivery for cancer treatment: a review. Mol Pharm 17, 373-391 https://doi.org/10.1021/acs.molpharmaceut.9b01020
  28. Mo F, Jiang K, Zhao D, Wang Y, Song J and Tan W (2021) DNA hydrogel-based gene editing and drug delivery systems. Adv Drug Deliv Rev 168, 79-98 https://doi.org/10.1016/j.addr.2020.07.018
  29. Zheng J, Song X, Yang Z et al (2022) Self-assembly hydrogels of therapeutic agents for local drug delivery. J Control Release 350, 898-921 https://doi.org/10.1016/j.jconrel.2022.09.001
  30. Kass LE and Nguyen J (2022) Nanocarrier-hydrogel composite delivery systems for precision drug release. Wiley Interdiscip Rev Nanomed Nanobiotechnol 14, e1756
  31. Li J and Mooney DJ (2016) Designing hydrogels for controlled drug delivery. Nat Rev Mater 1, 16071
  32. Patterson AK and Smith DK (2020) Two-component supramolecular hydrogel for controlled drug release. Chem Commun (Camb) 56, 11046-11049 https://doi.org/10.1039/D0CC03962D
  33. Khan F, Atif M, Haseen M et al (2022) Synthesis, classification and properties of hydrogels: their applications in drug delivery and agriculture. J Mater Chem B 10, 170-203 https://doi.org/10.1039/D1TB01345A
  34. Kim YM, Potta T, Park KH and Song SC (2017) Temperature responsive chemical crosslinkable UV pretreated hydrogel for application to injectable tissue regeneration system via differentiations of encapsulated hMSCs. Biomaterials 112, 248-256 https://doi.org/10.1016/j.biomaterials.2016.10.025
  35. Liao WC, Lilienthal S, Kahn JS et al (2017) pH- and ligand-induced release of loads from DNA-acrylamide hydrogel microcapsules. Chem Sci 8, 3362-3373 https://doi.org/10.1039/C6SC04770J
  36. Zhang H, Guo S, Fu S and Zhao Y (2017) A near-infrared light-responsive hybrid hydrogel based on UCST triblock copolymer and gold nanorods. Polymers (Basel) 9, 238
  37. Zhong Y, Xiao H, Seidi F and Jin Y (2020) Natural polymer-based antimicrobial hydrogels without synthetic antibiotics as wound dressings. Biomacromolecules 21, 2983-3006 https://doi.org/10.1021/acs.biomac.0c00760
  38. Prabhu S, Bubbly SG and Gudennavar SB (2020) Synthetic polymer hydrogels as potential tissue phantoms in radiation therapy and dosimetry. Biomed Phys Eng Express 6, 55008
  39. Francesko A, Petkova P and Tzanov T (2018) Hydrogel dressings for advanced wound management. Curr Med Chem 25, 5782-5797
  40. Abinaya B, Prasith TP, Ashwin B, Viji CS and Selvamurugan N (2019) Chitosan in surface modification for bone tissue engineering applications. Biotechnol J 14, e1900171
  41. Norouzi M, Nazari B and Miller DW (2016) Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discov Today 21, 1835-1849 https://doi.org/10.1016/j.drudis.2016.07.006
  42. Wang H, Rodell CB, Lee ME et al (2017) Computational sensitivity investigation of hydrogel injection characteristics for myocardial support. J Biomech 64, 231-235 https://doi.org/10.1016/j.jbiomech.2017.08.024
  43. Wilson KL, Carmichael ST and Segura T (2020) Injection of hydrogel biomaterial scaffolds to the brain after stroke. J Vis Exp 10.3791/61450
  44. Eddy K and Chen S (2020) Overcoming immune evasion in melanoma. Int J Mol Sci 21, 8984
  45. Timar J and Ladanyi A (2022) Molecular pathology of skin melanoma: epidemiology, differential diagnostics, prognosis and therapy prediction. Int J Mol Sci 23, 5384
  46. Long GV, Swetter SM, Menzies AM, Gershenwald JE and Scolyer RA (2023) Cutaneous melanoma. Lancet 402, 485-502 https://doi.org/10.1016/S0140-6736(23)00821-8
  47. Lazaroff J and Bolotin D (2023) Targeted therapy and immunotherapy in melanoma. Dermatol Clin 41, 65-77 https://doi.org/10.1016/j.det.2022.07.007
  48. Li S, Zhang Z, Lai WF, Cui L and Zhu X (2020) How to overcome the side effects of tumor immunotherapy. Biomed Pharmacother 130, 110639
  49. Scotte F, Ratta R and Beuzeboc P (2019) Side effects of immunotherapy: a constant challenge for oncologists. Curr Opin Oncol 31, 280-285 https://doi.org/10.1097/CCO.0000000000000541
  50. Zaremba A, Zimmer L, Griewank KG et al (2020) Immunotherapy for malignant melanoma. Internist (Berl) 61, 669-675 https://doi.org/10.1007/s00108-020-00812-1
  51. Bernhard S and Tibbitt MW (2021) Supramolecular engineering of hydrogels for drug delivery. Adv Drug Deliv Rev 171, 240-256 https://doi.org/10.1016/j.addr.2021.02.002
  52. Cao H, Duan L, Zhang Y, Cao J and Zhang K (2021) Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther 6, 426
  53. Kurt E and Segura T (2022) Nucleic acid delivery from granular hydrogels. Adv Healthc Mater 11, e2101867
  54. Ho TC, Chang CC, Chan HP et al (2022) Hydrogels: properties and applications in biomedicine. Molecules 27, 2902
  55. Lu J, Song J, Zhang P et al (2023) Biomineralized poly-dopamine nanoparticle-based sodium alginate hydrogels for delivery of anti-serine/threonine protein kinase B-rapidly accelerated fibrosarcoma siRNA for metastatic melanoma therapy. Acs Nano 17, 18318-18331 https://doi.org/10.1021/acsnano.3c05563
  56. Wang Y, Zhang Z, Luo J, Han X, Wei Y and Wei X (2021) mRNA vaccine: a potential therapeutic strategy. Mol Cancer 20, 33
  57. Xu S, Yang K, Li R and Zhang L (2020) mRNA Vaccine era-mechanisms, drug platform and clinical prospection. Int J Mol Sci 21, 6582
  58. Miao L, Zhang Y and Huang L (2021) mRNA vaccine for cancer immunotherapy. Mol Cancer 20, 41
  59. Oliva N, Conde J, Wang K and Artzi N (2017) Designing hydrogels for on-demand therapy. Acc Chem Res 50, 669-679 https://doi.org/10.1021/acs.accounts.6b00536
  60. Yin Y, Li X, Ma H et al (2021) In situ transforming RNA nanovaccines from polyethylenimine functionalized graphene oxide hydrogel for durable cancer immunotherapy. Nano Lett 21, 2224-2231 https://doi.org/10.1021/acs.nanolett.0c05039
  61. Medina SH, Li S, Howard OM et al (2015) Enhanced immunostimulatory effects of DNA-encapsulated peptide hydrogels. Biomaterials 53, 545-553 https://doi.org/10.1016/j.biomaterials.2015.02.125
  62. Cai L, Liu S, Guo J and Jia YG (2020) Polypeptide-based self-healing hydrogels: design and biomedical applications. Acta Biomater 113, 84-100 https://doi.org/10.1016/j.actbio.2020.07.001
  63. Li W, Zhu X, Zhou X et al (2021) An orally available PD-1/PD-L1 blocking peptide OPBP-1-loaded trimethyl chitosan hydrogel for cancer immunotherapy. J Control Release 334, 376-388 https://doi.org/10.1016/j.jconrel.2021.04.036
  64. Yi M, Zheng X, Niu M, Zhu S, Ge H and Wu K (2022) Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer 21, 28
  65. Song H, Yang P, Huang P, Zhang C, Kong D and Wang W (2019) Injectable polypeptide hydrogel-based co-delivery of vaccine and immune checkpoint inhibitors improves tumor immunotherapy. Theranostics 9, 2299-2314 https://doi.org/10.7150/thno.30577
  66. Han X, Li H, Zhou D, Chen Z and Gu Z (2020) Local and targeted delivery of immune checkpoint blockade therapeutics. Acc Chem Res 53, 2521-2533 https://doi.org/10.1021/acs.accounts.0c00339
  67. Li Y, Fang M, Zhang J et al (2016) Hydrogel dual delivered celecoxib and anti-PD-1 synergistically improve antitumor immunity. Oncoimmunology 5, e1074374
  68. Yu S, Wang C, Yu J et al (2018) Injectable bioresponsive gel depot for enhanced immune checkpoint blockade. Adv Mater 30, e1801527
  69. Song H, Huang P, Niu J et al (2018) Injectable polypeptide hydrogel for dual-delivery of antigen and TLR3 agonist to modulate dendritic cells in vivo and enhance potent cytotoxic T-lymphocyte response against melanoma. Biomaterials 159, 119-129 https://doi.org/10.1016/j.biomaterials.2018.01.004
  70. Domingues B, Lopes JM, Soares P and Populo H (2018) Melanoma treatment in review. Immunotargets Ther 7, 35-49 https://doi.org/10.2147/ITT.S134842
  71. Sood S, Jayachandiran R and Pandey S (2021) Current advancements and novel strategies in the treatment of metastatic melanoma. Integr Cancer Ther 20, 1873208510
  72. Villani A, Potestio L, Fabbrocini G, Troncone G, Malapelle U and Scalvenzi M (2022) The treatment of advanced melanoma: therapeutic update. Int J Mol Sci 23, 6388
  73. Cuevas LM and Daud AI (2018) Immunotherapy for melanoma. Semin Cutan Med Surg 37, 127-131 https://doi.org/10.12788/j.sder.2018.028
  74. Stachyra-Strawa P, Ciesielka M, Janiszewski M and Grzybowska-Szatkowska L (2021) The role of immunotherapy and molecular‑targeted therapy in the treatment of melanoma (Review). Oncol Rep 46, 158
  75. Tagliaferri L, Lancellotta V, Fionda B et al (2022) Immunotherapy and radiotherapy in melanoma: a multidisciplinary comprehensive review. Hum Vaccin Immunother 18, 1903827
  76. Bagchi S, Yuan R and Engleman EG (2021) Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol 16, 223-249 https://doi.org/10.1146/annurev-pathol-042020-042741
  77. Leach DG, Young S and Hartgerink JD (2019) Advances in immunotherapy delivery from implantable and injectable biomaterials. Acta Biomater 88, 15-31 https://doi.org/10.1016/j.actbio.2019.02.016
  78. Li Q, Shi Z, Zhang F, Zeng W, Zhu D and Mei L (2022) Symphony of nanomaterials and immunotherapy based on the cancer-immunity cycle. Acta Pharm Sin B 12, 107-134 https://doi.org/10.1016/j.apsb.2021.05.031
  79. Anko M, Kobayashi Y, Banno K and Aoki D (2021) Current status and prospects of immunotherapy for gynecologic melanoma. J Pers Med 11, 403
  80. Moyers JT and Glitza OI (2021) Immunotherapy for Melanoma. Adv Exp Med Biol 1342, 81-111 https://doi.org/10.1007/978-3-030-79308-1_3
  81. Zhou YH, Ye T, Ye CZ et al (2021) Secretions from hypochlorous acid-treated tumor cells delivered in a melittin hydrogel potentiate cancer immunotherapy. Bioact Mater 9, 541-553
  82. Sharma S and Tiwari S (2020) A review on biomacromolecular hydrogel classification and its applications. Int J Biol Macromol 162, 737-747 https://doi.org/10.1016/j.ijbiomac.2020.06.110
  83. Bisotti F, Pizzetti F, Storti G and Rossi F (2022) Mathematical modelling of cross-linked polyacrylic-based hydrogels: physical properties and drug delivery. Drug Deliv Transl Res 12, 1928-1942 https://doi.org/10.1007/s13346-022-01129-2
  84. Bobbala S, Gibson B, Gamble AB, McDowell A and Hook S (2018) Poloxamer 407-chitosan grafted thermoresponsive hydrogels achieve synchronous and sustained release of antigen and adjuvant from single-shot vaccines. Immunol Cell Biol 96, 656-665 https://doi.org/10.1111/imcb.12031
  85. Yang C, Lee A, Gao S, Liu S, Hedrick JL and Yang YY (2019) Hydrogels with prolonged release of therapeutic antibody: block junction chemistry modification of 'ABA' copolymers provides superior anticancer efficacy. J Control Release 293, 193-200 https://doi.org/10.1016/j.jconrel.2018.11.026
  86. He J, Zhang N, Zhu Y, Jin R and Wu F (2021) MSC spheroids-loaded collagen hydrogels simultaneously promote neuronal differentiation and suppress inflammatory reaction through PI3K-Akt signaling pathway. Biomaterials 265, 120448
  87. Hu Q, Li H, Archibong E et al (2021) Inhibition of post-surgery tumour recurrence via a hydrogel releasing CAR-T cells and anti-PDL1-conjugated platelets. Nat Biomed Eng 5, 1038-1047 https://doi.org/10.1038/s41551-021-00712-1
  88. Liu Y, Li T, Sun M et al (2022) ZIF-8 modified multifunctional injectable photopolymerizable GelMA hydrogel for the treatment of periodontitis. Acta Biomater 146, 37-48 https://doi.org/10.1016/j.actbio.2022.03.046
  89. Zhang Z, Ai S, Yang Z and Li X (2021) Peptide-based supramolecular hydrogels for local drug delivery. Adv Drug Deliv Rev 174, 482-503 https://doi.org/10.1016/j.addr.2021.05.010
  90. Kumar A, Sood A, Singhmar R, Mishra YK, Thakur VK and Han SS (2022) Manufacturing functional hydrogels for inducing angiogenic-osteogenic coupled progressions in hard tissue repairs: prospects and challenges. Biomater Sci 10, 5472-5497 https://doi.org/10.1039/D2BM00894G
  91. Liu Z, Xin W, Ji J et al (2022) 3D-printed hydrogels in orthopedics: developments, limitations, and perspectives. Front Bioeng Biotechnol 10, 845342
  92. Xiao M, Tang Q, Zeng S et al (2023) Emerging biomaterials for tumor immunotherapy. Biomater Res 27, 47
  93. Tan B, Huang L, Wu Y and Liao J (2021) Advances and trends of hydrogel therapy platform in localized tumor treatment: a review. J Biomed Mater Res A 109, 404-425 https://doi.org/10.1002/jbm.a.37062