Acknowledgement
The research of the National Natural Science Foundation of China is 82072658.
References
- Meng Z, Fang X, Fu B et al (2022) Tumor immunotherapy boosted by R837 nanocrystals through combining chemotherapy and mild hyperthermia. J Control Release 350, 841-856 https://doi.org/10.1016/j.jconrel.2022.09.009
- Lin A, Sahun M, Biscop E et al (2023) Acquired non-thermal plasma resistance mediates a shift towards aerobic glycolysis and ferroptotic cell death in melanoma. Drug Resist Updat 67, 100914
- Mathiyalagan R, Valappil AK, Yang DC et al (2022) Gene regulations upon hydrogel-mediated drug delivery systems in skin cancers-an overview. Gels 8, 560
- Gong HZ, Zheng HY and Li J (2019) Amelanotic melanoma. Melanoma Res 29, 221-230 https://doi.org/10.1097/CMR.0000000000000571
- Ahmed B, Qadir MI and Ghafoor S (2020) Malignant melanoma: skin cancer-diagnosis, prevention, and treatment. Crit Rev Eukaryot Gene Expr 30, 291-297 https://doi.org/10.1615/CritRevEukaryotGeneExpr.2020028454
- Rastrelli M, Tropea S, Rossi CR and Alaibac M (2014) Melanoma: epidemiology, risk factors, pathogenesis, diagnosis and classification. In Vivo 28, 1005-1011
- Carlino MS, Larkin J and Long GV (2021) Immune checkpoint inhibitors in melanoma. Lancet 398, 1002-1014 https://doi.org/10.1016/S0140-6736(21)01206-X
- Huang AC and Zappasodi R (2022) A decade of checkpoint blockade immunotherapy in melanoma: understanding the molecular basis for immune sensitivity and resistance. Nat Immunol 23, 660-670 https://doi.org/10.1038/s41590-022-01141-1
- Davis LE, Shalin SC and Tackett AJ (2019) Current state of melanoma diagnosis and treatment. Cancer Biol Ther 20, 1366-1379 https://doi.org/10.1080/15384047.2019.1640032
- Pang K, Shi ZD, Wei LY et al (2023) Research progress of therapeutic effects and drug resistance of immunotherapy based on PD-1/PD-L1 blockade. Drug Resist Updat 66, 100907
- Bowers EC, Hassanin A and Ramos KS (2020) In vitro models of exosome biology and toxicology: new frontiers in biomedical research. Toxicol In Vitro 64, 104462
- Ralli M, Botticelli A, Visconti IC et al (2020) Immunotherapy in the treatment of metastatic melanoma: current knowledge and future directions. J Immunol Res 2020, 9235638
- Correa S, Meany EL, Gale EC et al (2022) Injectable nanoparticle-based hydrogels enable the safe and effective deployment of immunostimulatory CD40 Agonist antibodies. Adv Sci (Weinh) 9, e2103677
- Dong X, Liang J, Yang A et al (2019) Fluorescence imaging guided CpG nanoparticles-loaded IR820-hydrogel for synergistic photothermal immunotherapy. Biomaterials 209, 111-125 https://doi.org/10.1016/j.biomaterials.2019.04.024
- Vishnubhakthula S, Elupula R and Duran-Lara EF (2017) Recent advances in hydrogel-based drug delivery for melanoma cancer therapy: a mini review. J Drug Deliv 2017, 7275985
- Mansoor H, Ong HS, Riau AK, Stanzel TP, Mehta JS and Yam GH (2019) Current trends and future perspective of mesenchymal stem cells and exosomes in corneal diseases. Int J Mol Sci 20, 2853
- Yang D, Zhang W, Zhang H et al (2020) Progress, opportunity, and perspective on exosome isolation - efforts for efficient exosome-based theranostics. Theranostics 10, 3684-3707 https://doi.org/10.7150/thno.41580
- Rastogi S, Sharma V, Bharti PS et al (2021) The evolving landscape of exosomes in neurodegenerative diseases: exosomes characteristics and a promising role in early diagnosis. Int J Mol Sci 22, 440
- Zhao L, Wang Y and Zhang Y (2021) The potential diagnostic and therapeutic applications of exosomes in druginduced liver injury. Toxicol Lett 337, 68-77 https://doi.org/10.1016/j.toxlet.2020.11.021
- Mo F, Jiang K, Zhao D et al (2021) DNA hydrogel-based gene editing and drug delivery systems. Adv Drug Deliv Rev 168, 79-98 https://doi.org/10.1016/j.addr.2020.07.018
- Ozay O, Ekici S, Baran Y, Aktas N and Sahiner N (2009) Removal of toxic metal ions with magnetic hydrogels. Water Res 43, 4403-4411 https://doi.org/10.1016/j.watres.2009.06.058
- Song HS, Kwon OS, Kim JH, Conde J and Artzi N (2017) 3D hydrogel scaffold doped with 2D graphene materials for biosensors and bioelectronics. Biosens Bioelectron 89, 187-200 https://doi.org/10.1016/j.bios.2016.03.045
- Lim HL, Hwang Y, Kar M and Varghese S (2014) Smart hydrogels as functional biomimetic systems. Biomater Sci 2, 603-618 https://doi.org/10.1039/C3BM60288E
- Chai Q, Jiao Y and Yu X (2017) Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels 3, 6
- Kikuchi IS, Cardoso GR, Dua K et al (2017) Hydrogel based drug delivery systems: a review with special emphasis on challenges associated with decontamination of hydrogels and biomaterials. Curr Drug Deliv 14, 917-925 https://doi.org/10.2174/1567201813666161205130825
- Naahidi S, Jafari M, Logan M et al (2017) Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv 35, 530-544 https://doi.org/10.1016/j.biotechadv.2017.05.006
- Sun Z, Song C, Wang C, Hu Y and Wu J (2020) Hydrogel-based controlled drug delivery for cancer treatment: a review. Mol Pharm 17, 373-391 https://doi.org/10.1021/acs.molpharmaceut.9b01020
- Mo F, Jiang K, Zhao D, Wang Y, Song J and Tan W (2021) DNA hydrogel-based gene editing and drug delivery systems. Adv Drug Deliv Rev 168, 79-98 https://doi.org/10.1016/j.addr.2020.07.018
- Zheng J, Song X, Yang Z et al (2022) Self-assembly hydrogels of therapeutic agents for local drug delivery. J Control Release 350, 898-921 https://doi.org/10.1016/j.jconrel.2022.09.001
- Kass LE and Nguyen J (2022) Nanocarrier-hydrogel composite delivery systems for precision drug release. Wiley Interdiscip Rev Nanomed Nanobiotechnol 14, e1756
- Li J and Mooney DJ (2016) Designing hydrogels for controlled drug delivery. Nat Rev Mater 1, 16071
- Patterson AK and Smith DK (2020) Two-component supramolecular hydrogel for controlled drug release. Chem Commun (Camb) 56, 11046-11049 https://doi.org/10.1039/D0CC03962D
- Khan F, Atif M, Haseen M et al (2022) Synthesis, classification and properties of hydrogels: their applications in drug delivery and agriculture. J Mater Chem B 10, 170-203 https://doi.org/10.1039/D1TB01345A
- Kim YM, Potta T, Park KH and Song SC (2017) Temperature responsive chemical crosslinkable UV pretreated hydrogel for application to injectable tissue regeneration system via differentiations of encapsulated hMSCs. Biomaterials 112, 248-256 https://doi.org/10.1016/j.biomaterials.2016.10.025
- Liao WC, Lilienthal S, Kahn JS et al (2017) pH- and ligand-induced release of loads from DNA-acrylamide hydrogel microcapsules. Chem Sci 8, 3362-3373 https://doi.org/10.1039/C6SC04770J
- Zhang H, Guo S, Fu S and Zhao Y (2017) A near-infrared light-responsive hybrid hydrogel based on UCST triblock copolymer and gold nanorods. Polymers (Basel) 9, 238
- Zhong Y, Xiao H, Seidi F and Jin Y (2020) Natural polymer-based antimicrobial hydrogels without synthetic antibiotics as wound dressings. Biomacromolecules 21, 2983-3006 https://doi.org/10.1021/acs.biomac.0c00760
- Prabhu S, Bubbly SG and Gudennavar SB (2020) Synthetic polymer hydrogels as potential tissue phantoms in radiation therapy and dosimetry. Biomed Phys Eng Express 6, 55008
- Francesko A, Petkova P and Tzanov T (2018) Hydrogel dressings for advanced wound management. Curr Med Chem 25, 5782-5797
- Abinaya B, Prasith TP, Ashwin B, Viji CS and Selvamurugan N (2019) Chitosan in surface modification for bone tissue engineering applications. Biotechnol J 14, e1900171
- Norouzi M, Nazari B and Miller DW (2016) Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discov Today 21, 1835-1849 https://doi.org/10.1016/j.drudis.2016.07.006
- Wang H, Rodell CB, Lee ME et al (2017) Computational sensitivity investigation of hydrogel injection characteristics for myocardial support. J Biomech 64, 231-235 https://doi.org/10.1016/j.jbiomech.2017.08.024
- Wilson KL, Carmichael ST and Segura T (2020) Injection of hydrogel biomaterial scaffolds to the brain after stroke. J Vis Exp 10.3791/61450
- Eddy K and Chen S (2020) Overcoming immune evasion in melanoma. Int J Mol Sci 21, 8984
- Timar J and Ladanyi A (2022) Molecular pathology of skin melanoma: epidemiology, differential diagnostics, prognosis and therapy prediction. Int J Mol Sci 23, 5384
- Long GV, Swetter SM, Menzies AM, Gershenwald JE and Scolyer RA (2023) Cutaneous melanoma. Lancet 402, 485-502 https://doi.org/10.1016/S0140-6736(23)00821-8
- Lazaroff J and Bolotin D (2023) Targeted therapy and immunotherapy in melanoma. Dermatol Clin 41, 65-77 https://doi.org/10.1016/j.det.2022.07.007
- Li S, Zhang Z, Lai WF, Cui L and Zhu X (2020) How to overcome the side effects of tumor immunotherapy. Biomed Pharmacother 130, 110639
- Scotte F, Ratta R and Beuzeboc P (2019) Side effects of immunotherapy: a constant challenge for oncologists. Curr Opin Oncol 31, 280-285 https://doi.org/10.1097/CCO.0000000000000541
- Zaremba A, Zimmer L, Griewank KG et al (2020) Immunotherapy for malignant melanoma. Internist (Berl) 61, 669-675 https://doi.org/10.1007/s00108-020-00812-1
- Bernhard S and Tibbitt MW (2021) Supramolecular engineering of hydrogels for drug delivery. Adv Drug Deliv Rev 171, 240-256 https://doi.org/10.1016/j.addr.2021.02.002
- Cao H, Duan L, Zhang Y, Cao J and Zhang K (2021) Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther 6, 426
- Kurt E and Segura T (2022) Nucleic acid delivery from granular hydrogels. Adv Healthc Mater 11, e2101867
- Ho TC, Chang CC, Chan HP et al (2022) Hydrogels: properties and applications in biomedicine. Molecules 27, 2902
- Lu J, Song J, Zhang P et al (2023) Biomineralized poly-dopamine nanoparticle-based sodium alginate hydrogels for delivery of anti-serine/threonine protein kinase B-rapidly accelerated fibrosarcoma siRNA for metastatic melanoma therapy. Acs Nano 17, 18318-18331 https://doi.org/10.1021/acsnano.3c05563
- Wang Y, Zhang Z, Luo J, Han X, Wei Y and Wei X (2021) mRNA vaccine: a potential therapeutic strategy. Mol Cancer 20, 33
- Xu S, Yang K, Li R and Zhang L (2020) mRNA Vaccine era-mechanisms, drug platform and clinical prospection. Int J Mol Sci 21, 6582
- Miao L, Zhang Y and Huang L (2021) mRNA vaccine for cancer immunotherapy. Mol Cancer 20, 41
- Oliva N, Conde J, Wang K and Artzi N (2017) Designing hydrogels for on-demand therapy. Acc Chem Res 50, 669-679 https://doi.org/10.1021/acs.accounts.6b00536
- Yin Y, Li X, Ma H et al (2021) In situ transforming RNA nanovaccines from polyethylenimine functionalized graphene oxide hydrogel for durable cancer immunotherapy. Nano Lett 21, 2224-2231 https://doi.org/10.1021/acs.nanolett.0c05039
- Medina SH, Li S, Howard OM et al (2015) Enhanced immunostimulatory effects of DNA-encapsulated peptide hydrogels. Biomaterials 53, 545-553 https://doi.org/10.1016/j.biomaterials.2015.02.125
- Cai L, Liu S, Guo J and Jia YG (2020) Polypeptide-based self-healing hydrogels: design and biomedical applications. Acta Biomater 113, 84-100 https://doi.org/10.1016/j.actbio.2020.07.001
- Li W, Zhu X, Zhou X et al (2021) An orally available PD-1/PD-L1 blocking peptide OPBP-1-loaded trimethyl chitosan hydrogel for cancer immunotherapy. J Control Release 334, 376-388 https://doi.org/10.1016/j.jconrel.2021.04.036
- Yi M, Zheng X, Niu M, Zhu S, Ge H and Wu K (2022) Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer 21, 28
- Song H, Yang P, Huang P, Zhang C, Kong D and Wang W (2019) Injectable polypeptide hydrogel-based co-delivery of vaccine and immune checkpoint inhibitors improves tumor immunotherapy. Theranostics 9, 2299-2314 https://doi.org/10.7150/thno.30577
- Han X, Li H, Zhou D, Chen Z and Gu Z (2020) Local and targeted delivery of immune checkpoint blockade therapeutics. Acc Chem Res 53, 2521-2533 https://doi.org/10.1021/acs.accounts.0c00339
- Li Y, Fang M, Zhang J et al (2016) Hydrogel dual delivered celecoxib and anti-PD-1 synergistically improve antitumor immunity. Oncoimmunology 5, e1074374
- Yu S, Wang C, Yu J et al (2018) Injectable bioresponsive gel depot for enhanced immune checkpoint blockade. Adv Mater 30, e1801527
- Song H, Huang P, Niu J et al (2018) Injectable polypeptide hydrogel for dual-delivery of antigen and TLR3 agonist to modulate dendritic cells in vivo and enhance potent cytotoxic T-lymphocyte response against melanoma. Biomaterials 159, 119-129 https://doi.org/10.1016/j.biomaterials.2018.01.004
- Domingues B, Lopes JM, Soares P and Populo H (2018) Melanoma treatment in review. Immunotargets Ther 7, 35-49 https://doi.org/10.2147/ITT.S134842
- Sood S, Jayachandiran R and Pandey S (2021) Current advancements and novel strategies in the treatment of metastatic melanoma. Integr Cancer Ther 20, 1873208510
- Villani A, Potestio L, Fabbrocini G, Troncone G, Malapelle U and Scalvenzi M (2022) The treatment of advanced melanoma: therapeutic update. Int J Mol Sci 23, 6388
- Cuevas LM and Daud AI (2018) Immunotherapy for melanoma. Semin Cutan Med Surg 37, 127-131 https://doi.org/10.12788/j.sder.2018.028
- Stachyra-Strawa P, Ciesielka M, Janiszewski M and Grzybowska-Szatkowska L (2021) The role of immunotherapy and molecular‑targeted therapy in the treatment of melanoma (Review). Oncol Rep 46, 158
- Tagliaferri L, Lancellotta V, Fionda B et al (2022) Immunotherapy and radiotherapy in melanoma: a multidisciplinary comprehensive review. Hum Vaccin Immunother 18, 1903827
- Bagchi S, Yuan R and Engleman EG (2021) Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol 16, 223-249 https://doi.org/10.1146/annurev-pathol-042020-042741
- Leach DG, Young S and Hartgerink JD (2019) Advances in immunotherapy delivery from implantable and injectable biomaterials. Acta Biomater 88, 15-31 https://doi.org/10.1016/j.actbio.2019.02.016
- Li Q, Shi Z, Zhang F, Zeng W, Zhu D and Mei L (2022) Symphony of nanomaterials and immunotherapy based on the cancer-immunity cycle. Acta Pharm Sin B 12, 107-134 https://doi.org/10.1016/j.apsb.2021.05.031
- Anko M, Kobayashi Y, Banno K and Aoki D (2021) Current status and prospects of immunotherapy for gynecologic melanoma. J Pers Med 11, 403
- Moyers JT and Glitza OI (2021) Immunotherapy for Melanoma. Adv Exp Med Biol 1342, 81-111 https://doi.org/10.1007/978-3-030-79308-1_3
- Zhou YH, Ye T, Ye CZ et al (2021) Secretions from hypochlorous acid-treated tumor cells delivered in a melittin hydrogel potentiate cancer immunotherapy. Bioact Mater 9, 541-553
- Sharma S and Tiwari S (2020) A review on biomacromolecular hydrogel classification and its applications. Int J Biol Macromol 162, 737-747 https://doi.org/10.1016/j.ijbiomac.2020.06.110
- Bisotti F, Pizzetti F, Storti G and Rossi F (2022) Mathematical modelling of cross-linked polyacrylic-based hydrogels: physical properties and drug delivery. Drug Deliv Transl Res 12, 1928-1942 https://doi.org/10.1007/s13346-022-01129-2
- Bobbala S, Gibson B, Gamble AB, McDowell A and Hook S (2018) Poloxamer 407-chitosan grafted thermoresponsive hydrogels achieve synchronous and sustained release of antigen and adjuvant from single-shot vaccines. Immunol Cell Biol 96, 656-665 https://doi.org/10.1111/imcb.12031
- Yang C, Lee A, Gao S, Liu S, Hedrick JL and Yang YY (2019) Hydrogels with prolonged release of therapeutic antibody: block junction chemistry modification of 'ABA' copolymers provides superior anticancer efficacy. J Control Release 293, 193-200 https://doi.org/10.1016/j.jconrel.2018.11.026
- He J, Zhang N, Zhu Y, Jin R and Wu F (2021) MSC spheroids-loaded collagen hydrogels simultaneously promote neuronal differentiation and suppress inflammatory reaction through PI3K-Akt signaling pathway. Biomaterials 265, 120448
- Hu Q, Li H, Archibong E et al (2021) Inhibition of post-surgery tumour recurrence via a hydrogel releasing CAR-T cells and anti-PDL1-conjugated platelets. Nat Biomed Eng 5, 1038-1047 https://doi.org/10.1038/s41551-021-00712-1
- Liu Y, Li T, Sun M et al (2022) ZIF-8 modified multifunctional injectable photopolymerizable GelMA hydrogel for the treatment of periodontitis. Acta Biomater 146, 37-48 https://doi.org/10.1016/j.actbio.2022.03.046
- Zhang Z, Ai S, Yang Z and Li X (2021) Peptide-based supramolecular hydrogels for local drug delivery. Adv Drug Deliv Rev 174, 482-503 https://doi.org/10.1016/j.addr.2021.05.010
- Kumar A, Sood A, Singhmar R, Mishra YK, Thakur VK and Han SS (2022) Manufacturing functional hydrogels for inducing angiogenic-osteogenic coupled progressions in hard tissue repairs: prospects and challenges. Biomater Sci 10, 5472-5497 https://doi.org/10.1039/D2BM00894G
- Liu Z, Xin W, Ji J et al (2022) 3D-printed hydrogels in orthopedics: developments, limitations, and perspectives. Front Bioeng Biotechnol 10, 845342
- Xiao M, Tang Q, Zeng S et al (2023) Emerging biomaterials for tumor immunotherapy. Biomater Res 27, 47
- Tan B, Huang L, Wu Y and Liao J (2021) Advances and trends of hydrogel therapy platform in localized tumor treatment: a review. J Biomed Mater Res A 109, 404-425 https://doi.org/10.1002/jbm.a.37062