• 제목/요약/키워드: Domain term

Search Result 415, Processing Time 0.038 seconds

UNIQUENESS OF IDENTIFYING THE CONVECTION TERM

  • Cheng, Jin;Gen Nakamura;Erkki Somersalo
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.405-413
    • /
    • 2001
  • The inverse boundary value problem for the steady state heat equation with convection term is considered in a simply connected bounded domain with smooth boundary. Taking the Dirichlet to Neumann map which maps the temperature on the boundary to the that flux on the boundary as an observation data, the global uniqueness for identifying the convection term from the Dirichlet to Neumann map is proved.

  • PDF

AN EXTREMAL PROBLEM OF HOLOMORPHIC FUNCTIONS IN THE COMPLEX PLANE

  • Chung, Young-Bok;Park, Byoung-Il
    • Honam Mathematical Journal
    • /
    • v.35 no.4
    • /
    • pp.717-727
    • /
    • 2013
  • In this paper, we study on a higher order extremal problem relating the Ahlfors map associated to the pair of a finitely connected domain in the complex plane and a point there. We show the power of the Ahlfors map with some error term which is conformally equivalent maximizes any higher order derivative of holomorphic functions at the given point in the domain.

Long Term Monitoring of Dynamic Characteristics of a Jacket-Type Offshore Structure Using Dynamic Tilt Responses and Tidal Effects on Modal Properties (동적 경사 응답을 이용한 재킷식 해양구조물의 장기 동특성 모니터링 및 조류 영향 분석)

  • Yi, Jin-Hak;Park, Jin-Soon;Han, Sang-Hun;Lee, Kwang-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2A
    • /
    • pp.97-108
    • /
    • 2012
  • Dynamic responses were measured using long-term monitoring system for Uldolmok tidal current pilot power plant which is one of jacket-type offshore structures. Among the dynamic quantities, the tilt angle was chosen because the low frequency response components can be precisely measured by dynamic tiltmeter, and the natural frequencies and modal damping ratio were successfully identified using proposed LS-FDD (least squared frequency domain decomposition) method. And the effects of tidal height and tidal current velocity on the variation of natural frequencies and modal damping ratios were investigated in time and frequency domain. Also the non-parametric models were tested to model the relationship between tidal conditions and modal properties such as natural frequencies and damping ratios.

Modal tracking of seismically-excited buildings using stochastic system identification

  • Chang, Chia-Ming;Chou, Jau-Yu
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.419-433
    • /
    • 2020
  • Investigation of structural integrity has been a critical issue in the field of civil engineering for years. Visual inspection is one of the most available methods to explore deteriorative components in structures. Still, this method is not applicable to invisible damage of structures. Alternatively, system identification methods are capable of tracking modal properties of structures over time. The deviation of these dynamic properties can serve as indicators to access structural integrity. In this study, a modal tracking technique using frequency-domain system identification from seismic responses of structures is proposed. The method first segments the measured signals into overlapped sequential portions and then establishes multiple Hankel matrices. Each Hankel matrix is then converted to the frequency domain, and a temporal-average frequency-domain Hankel matrix can be calculated. This study also proposes the frequency band selection that can divide the frequency-domain Hankel matrix into several portions in accordance with referenced natural frequencies. Once these referenced natural frequencies are unavailable, the first few right singular vectors by the singular value decomposition can offer these references. Finally, the frequency-domain stochastic subspace identification tracks the natural frequencies and mode shapes of structures through quick stabilization diagrams. To evaluate performance of the proposed method, a numerical study is carried out. Moreover, the long-term monitoring strong motion records at a specific site are exploited to assess the tracking performance. As seen in results, the proposed method is capable of tracking modal properties through seismic responses of structures.

Ferroelectric ultra high-density data storage based on scanning nonlinear dielectric microscopy

  • Cho, Ya-Suo;Odagawa, Nozomi;Tanaka, Kenkou;Hiranaga, Yoshiomi
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.2
    • /
    • pp.94-112
    • /
    • 2007
  • Nano-sized inverted domain dots in ferroelectric materials have potential application in ultrahigh-density rewritable data storage systems. Herein, a data storage system is presented based on scanning non-linear dielectric microscopy and a thin film of ferroelectric single-crystal lithium tantalite. Through domain engineering, we succeeded to form an smallest artificial nano-domain single dot of 5.1 nm in diameter and artificial nano-domain dot-array with a memory density of 10.1 Tbit/$inch^2$ and a bit spacing of 8.0 nm, representing the highest memory density for rewritable data storage reported to date. Sub-nanosecond (500psec) domain switching speed also has been achieved. Next, long term retention characteristic of data with inverted domain dots is investigated by conducting heat treatment test. Obtained life time of inverted dot with the radius of 50nm was 16.9 years at $80^{\circ}C$. Finally, actual information storage with low bit error and high memory density was performed. A bit error ratio of less than $1\times10^{-4}$ was achieved at an areal density of 258 Gbit/inch2. Moreover, actual information storage is demonstrated at a density of 1 Tbit/$inch^2$.

  • PDF

Reproduction of Long-term Memory in hydroclimatological variables using Deep Learning Model

  • Lee, Taesam;Tran, Trang Thi Kieu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.101-101
    • /
    • 2020
  • Traditional stochastic simulation of hydroclimatological variables often underestimates the variability and correlation structure of larger timescale due to the difficulty in preserving long-term memory. However, the Long Short-Term Memory (LSTM) model illustrates a remarkable long-term memory from the recursive hidden and cell states. The current study, therefore, employed the LSTM model in stochastic generation of hydrologic and climate variables to examine how much the LSTM model can preserve the long-term memory and overcome the drawbacks of conventional time series models such as autoregressive (AR). A trigonometric function and the Rössler system as well as real case studies for hydrological and climatological variables were tested. Results presented that the LSTM model reproduced the variability and correlation structure of the larger timescale as well as the key statistics of the original time domain better than the AR and other traditional models. The hidden and cell states of the LSTM containing the long-memory and oscillation structure following the observations allows better performance compared to the other tested conventional models. This good representation of the long-term variability can be important in water manager since future water resources planning and management is highly related with this long-term variability.

  • PDF

Concept Extraction Technique from Documents Using Domain Ontology (지식 문서에서 도메인 온톨로지를 이용한 개념 추출 기법)

  • Mun Hyeon-Jeong;Woo Yong-Tae
    • The KIPS Transactions:PartD
    • /
    • v.13D no.3 s.106
    • /
    • pp.309-316
    • /
    • 2006
  • We propose a novel technique to categorize XML documents and extract a concept efficiently using domain ontology. First, we create domain ontology that use text mining technique and statistical technique. We propose a DScore technique to classify XML documents by using the structural characteristic of XML document. We also present TScore technique to extract a concept by comparing the association term set of domain ontology and the terms in the XML document. To verify the efficiency of the proposed technique, we perform experiment for 295 papers in the computer science area. The results of experiment show that the proposed technique using the structural information in the XML documents is more efficient than the existing technique. Especially, the TScore technique effectively extract the concept of documents although frequency of term is few. Hence, the proposed concept-based retrieval techniques can be expected to contribute to the development of an efficient ontology-based knowledge management system.

Case Study of Building a Malicious Domain Detection Model Considering Human Habitual Characteristics: Focusing on LSTM-based Deep Learning Model (인간의 습관적 특성을 고려한 악성 도메인 탐지 모델 구축 사례: LSTM 기반 Deep Learning 모델 중심)

  • Jung Ju Won
    • Convergence Security Journal
    • /
    • v.23 no.5
    • /
    • pp.65-72
    • /
    • 2023
  • This paper proposes a method for detecting malicious domains considering human habitual characteristics by building a Deep Learning model based on LSTM (Long Short-Term Memory). DGA (Domain Generation Algorithm) malicious domains exploit human habitual errors, resulting in severe security threats. The objective is to swiftly and accurately respond to changes in malicious domains and their evasion techniques through typosquatting to minimize security threats. The LSTM-based Deep Learning model automatically analyzes and categorizes generated domains as malicious or benign based on malware-specific features. As a result of evaluating the model's performance based on ROC curve and AUC accuracy, it demonstrated 99.21% superior detection accuracy. Not only can this model detect malicious domains in real-time, but it also holds potential applications across various cyber security domains. This paper proposes and explores a novel approach aimed at safeguarding users and fostering a secure cyber environment against cyber attacks.

Very Short-term Electric Load Forecasting for Real-time Power System Operation

  • Jung, Hyun-Woo;Song, Kyung-Bin;Park, Jeong-Do;Park, Rae-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1419-1424
    • /
    • 2018
  • Very short-term electric load forecasting is essential for real-time power system operation. In this paper, a very short-term electric load forecasting technique applying the Kalman filter algorithm is proposed. In order to apply the Kalman filter algorithm to electric load forecasting, an electrical load forecasting algorithm is defined as an observation model and a state space model in a time domain. In addition, in order to precisely reflect the noise characteristics of the Kalman filter algorithm, the optimal error covariance matrixes Q and R are selected from several experiments. The proposed algorithm is expected to contribute to stable real-time power system operation by providing a precise electric load forecasting result in the next six hours.

Chinese Multi-domain Task-oriented Dialogue System based on Paddle (Paddle 기반의 중국어 Multi-domain Task-oriented 대화 시스템)

  • Deng, Yuchen;Joe, Inwhee
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.308-310
    • /
    • 2022
  • With the rise of the Al wave, task-oriented dialogue systems have become one of the popular research directions in academia and industry. Currently, task-oriented dialogue systems mainly adopt pipelined form, which mainly includes natural language understanding, dialogue state decision making, dialogue state tracking and natural language generation. However, pipelining is prone to error propagation, so many task-oriented dialogue systems in the market are only for single-round dialogues. Usually single- domain dialogues have relatively accurate semantic understanding, while they tend to perform poorly on multi-domain, multi-round dialogue datasets. To solve these issues, we developed a paddle-based multi-domain task-oriented Chinese dialogue system. It is based on NEZHA-base pre-training model and CrossWOZ dataset, and uses intention recognition module, dichotomous slot recognition module and NER recognition module to do DST and generate replies based on rules. Experiments show that the dialogue system not only makes good use of the context, but also effectively addresses long-term dependencies. In our approach, the DST of dialogue tracking state is improved, and our DST can identify multiple slotted key-value pairs involved in the discourse, which eliminates the need for manual tagging and thus greatly saves manpower.