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UNIQUENESS OF IDENTIFYING
THE CONVECTION TERM

JiN CHENG, GEN NAKAMURA, AND ERKKI SOMBERSALO

ABSTRACT. The inverse boundary value problem for the steady
state heat equation with covection term is considered in a sim-
ply connected hounded domain with smooth boundary. Taking the
Dirichlet to Neumann map which maps the temperature on the
boundary to the heat flux on the boundary as an observation data,
the global uniqueness for identifying the convection term from the
Dirichlet to Neumann map is proved.

1. Introduction

In this paper, the following inverse boundary value problem is con-
sidered. Assume that a bounded body with non—solid and inaccessible
interior with a stationary velocity field is given. The problem is to
estimate the velocity distribution based on stationary temperature mea-
surements on the surface of the body. Mathematically, let £ C R® be a
simply connected bounded domain representing the body, and assume
that boundary 9Q is smooth. Let —2& denote the (real valued) ve-
locity field of the interior of the body. For simplicity, we assume that
@ € C*®(02). Assume further for simplicity that the diffusion coefficient
of the temperature is constant (equal to unity) throughout the medium.
Then the temperature distribution u = u(x,t) satisfies the convection—
diffusion equation

Gu=Au+2d-Vuin O x (0,7)
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where the factor two in front of @ is included for notational convenience.
The measurement setting can be described as follows. One applies a
known stationary temperature distribution at the surface of the body
and after stabilization measures the heat flux needed to maintain this
distribution. This measurement procedure is repeated with different
temperature distributions. Assuming that the convection field @ is not
affected by the warming of the body, the problem allows the following
mathematical formulation: For any f € HYV2(Q), let uy = us(z) €
H'(Q) satisfy the Dirichlet problem

(1) (A428-Vyuy =0 in R, ujl,n=1

The problem considered here is to determine @ from the knowledge of
the pairs

Ouy
(f au_. 1= (7 - Vug) |an)

where 1 is the exterior unit normal vector of d€Q.
By applying Green’s theorem, we can deﬁne the Dirichlet-to-Neumann

map Az : HY2(80) — H-12(9Q), f— 5‘1 via the identity

@) (afigdon = [ (Vur 90 = 2@ Tugpo) e

for any f,g € HY?(99Q), where u; is the solution to (1) and v is any
v € HY(f) such that v|an = g. As it is customary in the literature, the
inverse problem can be formulated in terms of the Dirichlet-to-Neumann
map as follows.

ProBLEM 1.1. Identify the convection field @ € C°°(Q)* from the
knowledge of Az : HY/2(8Q) — H~V2(8Q).

REMARK. Observe that the solution uy to (1) exists and is unique
due to the maximum principle (see Proposition 2.1 in Taylor’s book [5],
page 311 of Vol. 1).

_ We especially consider the uniqueness of the identification of & from
Az. We prove the following global uniqueness result.

THEOREM 1.1. Let @; € € C>(Q)3, j = 1,2, be real valued convection
fields that satisty Aa1 = Aa2 Then @, = &, in §.
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The corresponding two dimensional analogue of this result has been
proved by J. Cheng and M. Yamamoto ({1]). Their proof is based on
the use of the inverse scattering method that cannot be used in R3.

Note that the differential operator in (1) is not formally selfadjoint.
One of the purpose of our study is to see what kind of new techniques are
necessary to investigate the inverse problems for formally nonselfadjoint
operators. It turns out that that the technique used here does not differ
so much from that for the Scrédinger equation with magnetic potential.

2. Proof of the main result

In this section, we outline the proof of the main result, Theorem 1.1.
The proof is based ‘'on several auxiliary results that will be proved in the
next section.

In our proof of Theorem 1.1, we shall need an operators slightly more
general than that of (1). Indeed, consider the Schrédinger type boundary
value problem with a real valued convection term,

where @ is as before and g € L*(Q2) is a real-valued potential. Assuming
that this Dirichlet problem has a unique solution, we may define the cor-
responding Dirichlet-to-Neumann map Az, : H 1/2(90) — H-1/2(6%),

fro S e
(4) (Aa’q.f, Do = ./n (VUf Vv — (28 Vuy + quf)v) dz,

where v is as before. Associated with f\&,q, we also define an another
Dirichlet-to-Neumann map Az, : HY2(9Q) — HV2(0Q), f — @
(Vg + dug)lon as

(5) {Aigf 9lon
= f (Vw-Vu—%—d‘-(usv—vVuf)+(V-&'—q)va)dm,
Q

where v as before and denote Az, by Az if ¢ = 0. Later we will see
that we know Az if we know Ag. Ag,4 plays an important role in our
proof. It is well understood that the uniqueness of the inverse problem
of recovering both @ and ¢ from Az, fails. Indeed, as in the case of
Schrodinger operator with a magnetic potential {see [4]), let us introduce
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the space of gauge functions,
Cio () = {v € C=(Q) | ¢loa = 0},
and the gauge transformation
(6) T, : C°()® x L®(N) — C=(0)% x L=(Q),
(@) = (E+ Vi,q+|Vel* + Ap+23- Vy),

where ¢ € C§°(Q2). It is well known that the gauge transformations leave
the Dirichlet-to-Neumann Az, map intact. Indeed, if u; satisfes the
boundary value problem (3), with the potential (&, ¢}, then vy = e™%uy
satisfies the corresponding equation with the potential T,,(d,q) = (5, p)
and ’Uf|ag = f, - (V’Uf + gvf)'@ﬂ =1 (Vuf + &'Uf)|ag. However,
in a restricted class of potentials, this is the only non-uniqueness that
is related to the inverse problem of identifying (d,q) from Az, More
precisely, we shall show the following result.

THEOREM 2.1. Let (d},q;) € C®(Q)% x L=®(), 7 = 1,2 be two pairs
of potentials, and assume that supp(@; — @) C . If Agioi = Ao o
then we have

(@1,93) = Tp(d2, g2)

for some gauge function ¢ € C§°(£2).

Note that in particular V x @) = V x @3. The proof of this result is
outlined in the next section. .

Before describing further the idea of the proof of the main result, let
us formulate the property of the gauge transformation as a lemma.

LEMMA 2.1. Let @; € C*(Q0)%, 5 = 1,2, g € L>®() and ¢ € CF(Q)
satisfy
(al:Q) = TW(aZ) Q)
Then ¢ = O and consequently @, = ds.

Evidently, for convection terms differing only in a simply connected
~ bounded domain with smooth boundary, Theorem 2.1 and Lemma 2.1
immediately imply Theorem 1.1. Indeed, reminding Az, = Az, implies
Az, = Ag,, we have Az o = Az if Az, = As,, and hence (d@;,0) =
T,(d2,0) for some ¢ € C((,—Q) and so & = do.
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In the rest of this paper, we will show that it is possible to avoid the
assumption that the convection terms differ only in a simply connected
bounded domain with smooth boundary. This is achieved by appropriate
extension of the potentials into a slightly larger set including  and then

argue as above. The extension is based on the following generalization
of the result in V. Isakov [3].

THEOREM 2.2. From Ag, it is possible to compute @|sq and 8%@|sq
(|| > 0). As by products, we have the followings:

(i) We know Az if we know Az.

(ii) Assuming that @; € C°(Q)%, j = 1,2, be two convection terms
for which Aal = 1162. Then, &) — dy vanishes at the boundary up
to arbitrary order.

We introduce the following notations. Let £ € R® be a bounded
domain with smooth boundary such that Q ¢ Q. Let & € (¥} and
q' € L*(§Y) be extensions of the potentials @ and ¢ defined in £ to the
larger set (V. We denote by Az o the Dirichlet-to-Neumann map on
Y. We have the following result which can be easily proven by using
the definition of the Dirichlet to Neumann map.

LEMMA 2.2. Let @ € C®(X)3, ¢} € L(§V), j = 1,2 be extensions
of the potenmals of & aj € C=(N)3, ¢; € L=(Q)}, j = 1,2 such that
ay = az, g, = ¢ in W'\ Q. Then, we have that Aa) a1 = A[,,2 42 on O
implies A g, = A&» , on d8Y. In particular, Aal = Aa2 on O%) implies
A-r = A*i on 89'

With these results, the proof of the main theorem is straightforward.
Indeed, let d@;, 7 = 1,2, be two convection terms yiclding the same
boundary data. Let B be an open ball such that  C B. By Theorem
2.2, there are extensions @ € C*®(B) (j = 1,2) of & (j = 1,2) such
that @ = @, in B\ Q. Then, we have from Lemma 2.2, Aa"l = ./1512
on dB. Note that supp(@, — @) C B and B is a simply connected
bounded domain with smooth boundary. Hence, by the aforementioned
global uniqueness result for convection terms differing only in a simply
connected bounded domain with smooth boundary, @ = @, in B. This
immediately implies @; = &, in £.
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3. Proofs

In this section, we work out the details that were skipped in the
previous sections. We start by deriving an identity, sometimes referred
to as Alessandrini’s identity. To this end, consider the adjoint problem

(7) Av -2V -(@v)+qu=0 in £,
and the corresponding Dirichlet-to-Neumann map,
(Azg)s 1 vlag — - (Vv — dv)lsq.

A straightforward integration by parts argument shows that if v satisfies
the equation (7), then for any u € H'(f)) we have

(8) (’“’; (Ad,q)*U>BQ
= f (Vu-Vv+&'-(qu—UVu)+(V-&‘—q)uv)da:.
Q

By comparing with the definition of the mapping Az ,, we observe that

((A&',q)*vyu>aﬂ = (U) Aﬁ,qu)aﬂt

or
9 (Azg)e = Azgn

the adjoint of Az ,. Assume now that we have two potentials (&;, ¢;), j =
1,2, the corresponding boundary mappings being Az, 4., respectively.
Let u be any solution of the equation (3) with the potentials (@1,q1)
and v any solution of the equation (7) with (dz, ¢2). By the identity (9)
and the definitions (5) and (8), we get the identity

(10) <(Aa1 g1 A52,Q'2)u= U)
= (Aal a1 'U) - <’U, (Aa’2’q2)*'{))

= f ((&’1 —dy) (uVv —vVu) + (V- (@1 — @) — (g1 — qz))uv) dzx.
Q

This identity has several implications. Let us start by proving Theorem
2.1.

Proor orF THEOREM 2.1. As in the article [4], we can prove the
existence of exponentially growing solutions to the equations (3) and
(7). By substituting the solutions in the identity (10) and following the
reasoning of [2], we find first that Vx (@, —d2) = 0, and consequently d; —
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@2 = Vi with some ¢ € C§°(Q?) remirnding that Q is simply connected.
It follows, by the properties of the gauge transformation that

Az, q = Aay g = ATy (@) = Az, pa»
where
p2=aq2+ V|’ + Ap+ 23 - Vo
Applying the identity (10) to the pair (&1, ¢1), (@1, p2) and substituting
the corresponding exponentially growing solutions to this identity, we
find that ¢ = py, or (@1, q1) = T, (a2, ¢2) as claimed. O

Observe also that the identity (10) immediately implies the claim of
Lemma 2.2. Indeed, applying this identity in the extended domain ',
the claim of Lemma 2.2 easily follows.

PROOF OF LEMMA 2.1. Let &@;, j = 1,2 and ¢ be such that for some
¢ € C5°(92),
(51, Q) = T(,O(d% Q)
holds. Then, by the definition of the gauge transformation, y satisfies a
semilinear Dirichlet problem

Alp-l-lv{plg-’r‘ﬁ:z'vw:(] in 2, ¢lag=0.

But by just checking the proof of the Proposition 2.1 in [5} one can
deduce that ¢ = 0. O

ProoF oF THEOREM 2.2. Let (x!,z%, 2%) be the boundary nor-
mal coordinates such that (9z®/dz1, 0z /0, 02° /Oz3) = 7i on z° = 0.
Also let Dy, = —/=18/927 (1 € § <€ 3), ¢ = (z,2%), D, =
(Dy1,Dy2,D.3) = (Dy, Dg3). Then, in terms of the boundary normal
coordinates
(11) P(z,D;) .= —(A+2a-V)

= D% + V=1E(z)Dys + Q(x, Dp) — 2v/—1é - Dy,

where i = (&', a2,a%), a* = ?=1 Ox* [0z a; (1 < k < 3), E(z) is a
scalar real valued C*° function, Q(x, D) = Qa(x, Dy )+ Q1 (x, Dy ) with
C>® coefficient homogeneous partial differential operators Q;(x, D)
(7 = 1,2) of order j (j = 1,2). Moreover, E{(z), Q(z,D, ) are inde-
pendent of @ and Qa(xz, £’} is given by

(12) Qa(2,€) = g(z,£) Z 9°P¢ats
o,f=1
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with g = Ziﬁ:l Az /8z; 0z [0z; (1 < @, B < 2).
It is not difficult to prove that modulo a smoothing operator, we can
factorize P(x,D;) in the form

(13) P(z,D;) = (D + V—1E(z) - 2v/-1a° — v—1B)
D.s ++v/—1B)

where B(z, D,/) is a classical pseudodifferential operator of order 1 de-
pending smoothly on z3. Then, by a standard argument of the theory of
pseudodifferential operators, we can prove that Azis a classical pseudo-
differential operator of order 1 and its full symbol 6(Az)}(z',£') is given
by

(14) 5(Az)(z',€) = blyso,

where b = b(x, £’} is the full symbol of B(z, D).
Let 6(Az)(@',€) = 2 ;41 Ai(a &) be the asymptotic expansion of

&(Ag)(z',¢') for |¢'| > 1, where each A;(z’,£’) is positive homogeneous
of degree j in £'. Then, we can prove by induction

(15) CRIE (\/— ) 850} |z3=0 (r 2 1)

modulo terms which may depend on @ (1 < j < 3) and their z* deriva-
tives up to order » — 1 and

2
1 )
(16) dole', &) = - V=172 > d¢ —a
( ﬁ =1 ) 3=0
modulo terms which do not depend on 4. O
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