• 제목/요약/키워드: Distribution Manifold

검색결과 137건 처리시간 0.018초

LIGHTLIKE HYPERSURFACES WITH TOTALLY UMBILICAL SCREEN DISTRIBUTIONS

  • Jin, Dae-Ho
    • 충청수학회지
    • /
    • 제22권3호
    • /
    • pp.409-416
    • /
    • 2009
  • In this paper, we study the geometry of lightlike hypersurfaces of a semi-Riemannian manifold. We prove a classification theorem for lightlike hypersurfaces M with totally umbilical screen distributions of a semi-Riemannian space form.

  • PDF

Finsler Metrics Compatible With A Special Riemannian Structure

  • Park, Hong-Suh;Park, Ha-Yong;Kim, Byung-Doo
    • 대한수학회논문집
    • /
    • 제15권2호
    • /
    • pp.339-348
    • /
    • 2000
  • We introduce the notion of the Finsler metrics compat-ible with a special Riemannian structure f of type (1,1) satisfying f6+f2=0 and investigate the properties of Finsler space with them.

  • PDF

EINSTEIN HALF LIGHTLIKE SUBMANIFOLDS WITH A KILLING CO-SCREEN DISTRIBUTION

  • Jin, Dae-Ho
    • 호남수학학술지
    • /
    • 제30권3호
    • /
    • pp.487-504
    • /
    • 2008
  • In this paper we study the geometry of codimension 2 screen conformal Einstein half lightiike submanifolds M of a semi-Riemannian manifold $(\={M}(c),\={g})$ of constant curvature c, with a Killing co-screen distribution on $\={M}$. The main result is a classification theorem for screen homothetic Einstein half lightlike submanifold of Lorentzian space forms.

INVARIANT NULL RIGGED HYPERSURFACES OF INDEFINITE NEARLY α-SASAKIAN MANIFOLDS

  • Mohamed H. A. Hamed;Fortune Massamba
    • 대한수학회논문집
    • /
    • 제39권2호
    • /
    • pp.493-511
    • /
    • 2024
  • We introduce invariant rigged null hypersurfaces of indefinite almost contact manifolds, by paying attention to those of indefinite nearly α-Sasakian manifolds. We prove that, under some conditions, there exist leaves of the integrable screen distribution of the ambient manifolds admitting nearly α-Sasakian structures.

자동차용 PEMFC 스택 개발 (Development of PEMFC stack for Fuelcell vehicle)

  • 신환수;조규택;성용진;김영민;서진식;김세훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.374-377
    • /
    • 2005
  • Hyundai motor company has designed a above 50kW-class PEMFC stack for Fuelcell vehicle based on SUV. Hyundai increased the power density of the stack through the optimized flowfield of bipolar plate, manifold structure, and improvement of sealing, etc. Also, Gas to Gas humidifier was adopted in fuelcell system to reduce the system humidification load, it had been proven by short stack test. Components of stack, bilpolar plate, manifold, were analyzed through the computer simulation, so temperature and pressure distribution in the components and system were improved. This stack tested in Bread Board which was organized similar to real vehicle system.

  • PDF

On a Structure De ned by a Tensor Field F of Type (1, 1) Satisfying $ \prod\limits_{j=1}^{k}$[F2+a(j)F+λ2(j)I]=0

  • Das, Lovejoy;Nivas, Ram;Singh, Abhishek
    • Kyungpook Mathematical Journal
    • /
    • 제50권4호
    • /
    • pp.455-463
    • /
    • 2010
  • The differentiable manifold with f - structure were studied by many authors, for example: K. Yano [7], Ishihara [8], Das [4] among others but thus far we do not know the geometry of manifolds which are endowed with special polynomial $F_{a(j){\times}(j)$-structure satisfying $$\prod\limits_{j=1}^{k}\;[F^2+a(j)F+\lambda^2(j)I]\;=\;0$$ However, special quadratic structure manifold have been defined and studied by Sinha and Sharma [8]. The purpose of this paper is to study the geometry of differentiable manifolds equipped with such structures and define special polynomial structures for all values of j = 1, 2,$\ldots$,$K\;\in\;N$, and obtain integrability conditions of the distributions $\pi_m^j$ and ${\pi\limits^{\sim}}_m^j$.

LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Yucesan, Ahmet;Yasar, Erol
    • 대한수학회보
    • /
    • 제47권5호
    • /
    • pp.1089-1103
    • /
    • 2010
  • In this paper, we study lightlike submanifolds of a semi-Riemannian manifold admitting a semi-symmetric non-metric connection. We obtain a necessary and a sufficient condition for integrability of the screen distribution. Then we give the conditions under which the Ricci tensor of a lightlike submanifold with a semi-symmetric non-metric connection is symmetric. Finally, we show that the Ricci tensor of a lightlike submanifold of semi-Riemannian space form is not parallel with respect to the semi-symmetric non-metric connection.

HORIZONTALLY HOMOTHETIC HARMONIC MORPHISMS AND STABILITY OF TOTALLY GEODESIC SUBMANIFOLDS

  • Yun, Gab-Jin;Choi, Gun-Don
    • 대한수학회지
    • /
    • 제45권2호
    • /
    • pp.493-511
    • /
    • 2008
  • In this article, we study the relations of horizontally homothetic harmonic morphisms with the stability of totally geodesic submanifolds. Let $\varphi:(M^n,g)\rightarrow(N^m,h)$ be a horizontally homothetic harmonic morphism from a Riemannian manifold into a Riemannian manifold of non-positive sectional curvature and let T be the tensor measuring minimality or totally geodesics of fibers of $\varphi$. We prove that if T is parallel and the horizontal distribution is integrable, then for any totally geodesic submanifold P in N, the inverse set, $\varphi^{-1}$(P), is volume-stable in M. In case that P is a totally geodesic hypersurface the condition on the curvature can be weakened to Ricci curvature.

Using Central Manifold Theorem in the Analysis of Master-Slave Synchronization Networks

  • Castilho, Jose-Roberto;Carlos Nehemy;Alves, Luiz-Henrique
    • Journal of Communications and Networks
    • /
    • 제6권3호
    • /
    • pp.197-202
    • /
    • 2004
  • This work presents a stability analysis of the synchronous state for one-way master-slave time distribution networks with single star topology. Using bifurcation theory, the dynamical behavior of second-order phase-locked loops employed to extract the synchronous state in each node is analyzed in function of the constitutive parameters. Two usual inputs, the step and the ramp phase perturbations, are supposed to appear in the master node and, in each case, the existence and the stability of the synchronous state are studied. For parameter combinations resulting in non-hyperbolic synchronous states the linear approximation does not provide any information, even about the local behavior of the system. In this case, the center manifold theorem permits the construction of an equivalent vector field representing the asymptotic behavior of the original system in a local neighborhood of these points. Thus, the local stability can be determined.