On a Structure Defined by a Tensor Field F of Type $(1,1)$ Satisfying $\prod_{j=1}^{k}\left[F^{2}+a(j) F+\lambda^{2}(j) I\right]=0$

Lovejoy Das*
Department of Mathematics, Kent State University, New Philadelphia, Ohio 44663, USA
e-mail: E-mail:ldas@kent.edu
Ram Nivas and Abhishek Singh
Department of Mathematics and Astronomy, Lucknow University, Lucknow-226007, India
e-mail: rnivas@sify.com and sonu_1127@sify.com
Abstract. The differentiable manifold with f - structure were studied by many authors, for example: K. Yano [7], Ishihara [8], Das [4] among others but thus far we do not know the geometry of manifolds which are endowed with special polynomial $F_{a(j) \times(j)}$ - structure satisfying

$$
\prod_{j=1}^{K}\left[F^{2}+a(j) F+\lambda^{2}(j) I\right]=0
$$

However, special quadratic structure manifold have been defined and studied by Sinha and Sharma [8]. The purpose of this paper is to study the geometry of differentiable manifolds equipped with such structures and define special polynomial structures for all values of $j=1,2, \ldots, K \in N$, and obtain integrability conditions of the distributions π_{m}^{j} and $\widetilde{\pi}_{m}^{j}$.

1. Introduction

Let M^{n} be n - dimensional manifold of differentiability class C^{∞}. Suppose there exist on M^{n}, a tensor field $F(\neq 0)$ of type $(1,1)$ satisfying

$$
\begin{equation*}
\prod_{j=1}^{k}\left[F^{2}+a(j) F+\lambda^{2}(j) I\right]=0 \tag{1.1}
\end{equation*}
$$

where $\lambda(j)$ are scalars not equal to zero and $a(j)$ are real numbers for $j=$ $1,2, \ldots, k \in N$, the set of natural numbers. For arbitrary vector field X on M^{n} the

* Corresponding Author.

Received May 14, 2010; accepted September 27, 2010.
2000 Mathematics Subject Classification: 53C15, 57R55.
Key words and phrases: $F_{a(j), \lambda(j)}$ - structure, distribution, integrability.
above equation (1.1) can be put in the form

$$
\begin{equation*}
\prod_{j=1}^{k}\left[\overline{\bar{X}}+a(j) \bar{X}+\lambda^{2}(j) X\right]=0 \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{X} \stackrel{\text { def }}{=} F(X) \tag{1.3}
\end{equation*}
$$

Let us call the manifold M^{n} equipped with such a structure as the special $F_{a(j), \lambda(j)}$ - structure manifold.

Theorem 1.1. The rank of F in the special polynomial $F_{a(j), \lambda(j)}$ - structure is equal to the dimension of the manifold.
Proof. Assuming $\bar{X}=0 \Rightarrow \overline{\bar{X}}=0$. So from the equation (1.2) it follows that $\prod_{j=1}^{k}\left[\lambda^{2}(j) X\right]=0 \Rightarrow X=0$ as $\lambda(j) \neq 0$. So the Kernel of F is the trivial subspace $\{0\}$ of $T M^{n}$ where $T M^{n}$ denotes the tangent space of the manifold M^{n}. Hence if ν denotes the nullity of $F, \nu=0$. If ρ be the rank of F, then from a well-known theorem of linear algebra

$$
\begin{equation*}
\rho+\nu=n . \tag{1.4}
\end{equation*}
$$

Since $\nu=0$, hence $\rho=n$. This proves the theorem.
Theorem 1.2. The dimension of manifold M^{n} equipped with the special polynomial $F_{a(j), \lambda(j)}$ - structure for $a^{2}(j)<4 \lambda^{2}(j)$ is even.
Proof. Let δ be the eigen value of F and V be the corresponding eigen vector. Then

$$
\bar{V}=\delta V
$$

which yields

$$
\overline{\bar{V}}=\delta^{2} V
$$

Substituting these values of \bar{V} and $\overline{\bar{V}}$ in (1.2), we obtain

$$
\prod_{j=1}^{k}\left[\delta^{2} V+a(j) \delta V+\lambda^{2}(j) V\right]=0
$$

which gives

$$
\begin{equation*}
\prod_{j=1}^{k}\left[\delta^{2}+a(j) \delta+\lambda^{2}(j) I\right]=0 \tag{1.5}
\end{equation*}
$$

The roots of the above equation are given by

$$
\begin{equation*}
\delta=\frac{-a(j) \pm \sqrt{a^{2}(j)-4 \lambda^{2}(j)}}{2} ; \quad j=1,2, \ldots, k \in N \tag{1.6}
\end{equation*}
$$

If $a^{2}(j)<4 \lambda^{2}(j)$, the eigen value of F are of the form $\alpha(j) \pm \beta(j)$, where

$$
\alpha(j)=-\frac{a(j)}{2} \text { and } \beta(j)=\frac{\sqrt{4 \lambda^{2}(j)-a^{2}(j)}}{2}
$$

Since the complex eigen values occur in pairs, therefore the dimension n of the manifold must be even.

Theorem 1.3. The special polynomial $F_{a(j), \lambda(j)}$ - structure is not unique.
Proof. Let us put [5]

$$
\begin{equation*}
\mu\left(F^{\prime}(X)\right)=F(\mu(X)) \tag{1.7}
\end{equation*}
$$

where F^{\prime} is a tensor field of type $(1,1)$ and μ is a non-singular vector valued function on M^{n}. Thus

$$
\begin{align*}
\mu\left(F^{2}(X)\right) & =\mu F^{\prime}\left(F^{\prime}(X)\right) \tag{1.8}\\
& =\mu F^{\prime}\left(F^{\prime}(X)\right) \\
& =F\left(\mu\left(F^{\prime}(X)\right)\right. \\
& =F(F(\mu(X))) \\
& =F^{2}(\mu(X)) .
\end{align*}
$$

Thus we get

$$
\prod_{j=1}^{k} \mu\left[F^{\prime 2}(X)+a(j) F^{\prime}(X)+\lambda^{2}(j)(X)\right]=\prod_{j=1}^{k}\left[F^{2}(\mu(X))+a(j) F(\mu(X))+\lambda^{2}(j)(\mu(X))\right]=0
$$

By virtue of the equation (1.1). Thus we obtain

$$
\prod_{j=1}^{k}\left[F^{\prime 2}+a(j) F^{\prime}+\lambda^{2}(j) I\right]=0
$$

as μ is non singular. Hence F^{\prime} gives the special polynomial $F_{a(j), \lambda(j)}$ - structure on the manifold M^{n}.

2. Existence conditions

In this section, we shall prove the following:
Theorem 2.1. In order that the even dimensional manifold $M^{2 k m}$ may admit the special polynomial $F_{a(j), \lambda(j)}$ - structure for $a^{2}(j)<4 \lambda^{2}(j)$, it is necessary and sufficient that it contains k distributions π_{m}^{j} of dimensions m and k distributions $\tilde{\pi}_{m}^{j}$ conjugate to π_{m}^{j} such that they are mutually disjoint and span together a manifold of dimension 2 km .

Proof. Suppose first that the manifold $M^{2 k m}$ admits the special polynomial $F_{a(j), \lambda(j)}$ - structure for $a^{2}(j)<4 \lambda^{2}(j)$. Hence the tensor F has k sets of m eigen values each of the form $(\alpha(j)+i \beta(j))$ and other k sets of eigen values of the form $(\alpha(j)-i \beta(j)), j=1,2, \ldots, k \in N$. Let $P_{x}^{j}, x=1,2, \ldots, m ; j=1,2 \ldots, k$ be m eigen vectors for the m eigen values $(\alpha(j)+i \beta(j))$ and $Q_{x}^{j}, x=1,2, \ldots, m$; $j=1,2, \ldots, k$ be m eigen vectors for the m eigen values $(\alpha(j)-i \beta(j))$ of F. Suppose

$$
\begin{equation*}
\prod_{j=1}^{k}\left[b_{j}^{x} P_{x}^{j}+c_{j}^{x} Q_{x}^{j}\right]=0, \quad b_{j}^{x}, c_{j}^{x} \in R, \quad x=1,2, \ldots, m ; \quad j=1,2, \ldots, k \tag{2.1}
\end{equation*}
$$

Operating the above equation (2.1) by F and making use of the fact that P_{x}^{l}, Q_{x}^{l} are eigen vectors for the eigen values $(\alpha(l)+i \beta(l))$ and $(\alpha(l)-i \beta(l))$ of F, $1<l<k \in N$, we get

$$
\begin{equation*}
\left[b_{l}^{x} P_{x}^{l}-c_{l}^{x} Q_{x}^{l}\right] \prod_{\substack{j=1 \\ j \neq l}}^{k}\left[b_{j}^{x} P_{x}^{j}+c_{j}^{x} Q_{x}^{j}\right]=0 \tag{2.2}
\end{equation*}
$$

Thus from equation (2.1) and (2.2), we get

$$
\begin{equation*}
b_{l}^{x}=0 \text { and } c_{l}^{x}=0, \quad x=1,2, \cdots, m ; j=l . \tag{2.3}
\end{equation*}
$$

Hence the set $\left\{P_{x}^{l}, Q_{x}^{l}\right\}$ is linearly independent. Similarly, we get $b_{j}^{x}=0$ and $c_{j}^{x}=0$, for all values of $j=1,2, \cdots, k \in N ; \quad x=1,2, \cdots, m$.

Hence the set $\left\{P_{x}^{j}, Q_{x}^{j}\right\}$ is linearly independent for all values of $x=1,2, \cdots, m$; $j=1,2, \cdots, k \in N$.

Let $L j$ and $M j$ be the linear transformation given by

$$
\begin{equation*}
L j(X)=\bar{X}-(\alpha(j)-i \beta(j)) X \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
M j(X)=\bar{X}-(\alpha(j)+i \beta(j)) X \tag{2.5}
\end{equation*}
$$

The results can be easily proved

$$
\begin{align*}
L j\left(P_{x}^{j}\right) & =2 i \beta P_{x}^{j} \tag{2.6}\\
L j\left(Q_{x}^{j}\right) & =0 \\
M j\left(P_{x}^{j}\right) & =0 \\
M j\left(Q_{x}^{j}\right) & =-2 i \beta Q_{x}^{j} .
\end{align*}
$$

Thus there exist k distributions π_{m}^{j} and k distributions $\tilde{\pi}_{m}^{j}$ each of dimension m such that they are mutually disjoint and span together a manifold of dimension $2 k m$. The projections $L j$ and $M j$ are given by (2.4) and (2.5).

Suppose conversely that there exist k distributions π_{m}^{j} and k distributions $\tilde{\pi}_{m}^{j}$ each of dimension m such that they have no common direction and span together a manifold of dimension 2 km .

Suppose in the k distributions π_{m}^{j} there are m linearly independent eigen vectors P_{x}^{j} and for the k distributions $\tilde{\pi}_{m}^{j}$ the m linearly independent eigen vectors are Q_{x}^{j}, $x=1,2, \cdots, m ; j=1,2, \cdots, k \in N$. Then the set $\left\{P_{x}^{j}, Q_{x}^{j}\right\}$ is linearly independent.

Let $\left\{p_{x}^{j}, q_{x}^{j}\right\}$ be the set of 1-forms dual to the set $\left\{P_{x}^{j}, Q_{x}^{j}\right\}$. Then

$$
\begin{align*}
p_{j}^{x}\left(P_{y}^{j}\right) & =\delta_{y}^{x}, \tag{2.7}\\
p_{j}^{x}\left(Q_{y}^{j}\right) & =0, \\
q_{j}^{x}\left(P_{y}^{j}\right) & =0, \\
q_{j}^{x}\left(Q_{y}^{j}\right) & =\delta_{y}^{x},
\end{align*}
$$

also let

$$
\begin{equation*}
\prod_{j=1}^{k}\left[p_{j}^{x}(X) P_{x}^{j}+q_{j}^{x}(X) Q_{x}^{j}\right]=X \tag{2.8}
\end{equation*}
$$

Barring the equation (2.8) both sides and using the fact that P_{x}^{l}, Q_{x}^{l} are eigen vectors for the eigen values $\alpha(l)+i \beta(l)$ and $\alpha(l)-i \beta(l)$ of F we get

$$
\begin{align*}
& {\left[(\alpha(l)+i \beta(l)) p_{l}^{x}(X) P_{x}^{l}+\left(\alpha(l)-i \beta(l) q_{l}^{x}(X) Q_{x}^{l}\right] \prod_{\substack{j=1 \\
j \neq l}}^{k}\left[p_{j}^{x}(X) P_{x}^{j}+q_{j}^{x}(X) Q_{x}^{j}\right]\right.} \tag{2.9}\\
& \quad=\bar{X}
\end{align*}
$$

Thus from the equation (2.8) and (2.9), we get

$$
\begin{equation*}
\bar{X}=\alpha(l) X+\left[i \beta(l)\left(p_{l}^{x}(X) P_{x}^{l}-q_{l}^{x}(X) Q_{x}^{l}\right)\right] \prod_{\substack{j=1 \\ j \neq l}}^{k}\left[p_{j}^{x}(X) P_{x}^{j}+q_{j}^{x}(X) Q_{x}^{j}\right] \tag{2.10}
\end{equation*}
$$

Barring (2.9) again and using the same fact that P_{x}^{l}, Q_{x}^{l} are eigen vectors for the eigen values $\alpha(l)+i \beta(l)$ and $\alpha(l)-i \beta(l)$ of F, we get

$$
\begin{align*}
& \overline{\bar{X}}=\left[(\alpha(l)+i \beta(l))^{2}\left(p_{l}^{x}(X) P_{x}^{l}+(\alpha(l)-i \beta(l))^{2} q_{l}^{x}(X) Q_{x}^{l}\right)\right] \tag{2.11}\\
& \prod_{\substack{j=1 \\
j \neq l}}^{k}\left[p_{j}^{x}(X) P_{x}^{j}+q_{j}^{x}(X) Q_{x}^{j}\right]
\end{align*}
$$

In view of the equation (2.8) and (2.10) and (2.11), we get

$$
\overline{\bar{X}}-2 \alpha(l) \bar{X}+\left(\alpha^{2}(l)+\beta^{2}(l)\right) X=0
$$

Since $\alpha(l)=-\frac{a(l)}{2}$ and $\beta(l)=\frac{\sqrt{4 \lambda^{2}(l)-a^{2}(l)}}{2}$, where $1 \leq l \leq k$.
Similarly it follows that

$$
\prod_{j=1}^{k}\left[\overline{\bar{X}}+a(j) \bar{X}+\lambda^{2}(j) X\right]=0 \text { for all } j=1,2, \cdots, k \in N
$$

Thus the manifold $M^{2 k m}$ admits the special polynomial $F_{a(j), \lambda(j)}$ - structure for $j=1,2, \cdots, k \in N$.

Theorem 2.2. We have

$$
\begin{align*}
L^{2} j & =2 i \beta(j) L j, \tag{2.12}\\
M^{2} j & =-2 i \beta(j) M j \\
L j M j & =M j L j=0 .
\end{align*}
$$

Proof. We have in view of the equation (2.4)

$$
L j=F-(\alpha(j)-i \beta(j)) I
$$

Thus

$$
L^{2} j=F^{2}-2[\alpha(j)-i \beta(j)] F+(\alpha(j)-i \beta(j))^{2} I
$$

Since $\alpha(j) \pm \beta(j)$ is the root $\prod_{j=1}^{k}\left[F^{2}+a(j) F+\lambda^{2}(j) I\right]=0$, so

$$
\begin{gathered}
L^{2} j=-a(j) F-\lambda^{2}(j) I-2[\alpha(j)-i \beta(j)] F+(\alpha(j)-i \beta(j))^{2} I \\
L^{2} j=2 i \beta(j)[F-(\alpha(j)-i \beta(j)) I] \\
L^{2} j=2 i \beta(j) L(j)
\end{gathered}
$$

Similarly, it can be shown that

$$
M^{2} j=-2 i \beta(j) M(j)
$$

Also,

$$
L j M j=M j L j=[F-(\alpha(j)-i \beta(j)) I][F-(\alpha(j)+i \beta(j)) I]
$$

or

$$
\begin{equation*}
L j M j=M j L j=F^{2}+\left[\alpha^{2}(j)+\beta^{2}(j)\right] I-2 \alpha(j) F \tag{2.13}
\end{equation*}
$$

Since $\alpha(j)=-\frac{a(j)}{2}$ and $\alpha^{2}(j)+\beta^{2}(j)=\lambda^{2}(j)$.

Hence

$$
\begin{equation*}
L j M j=M j L j=F^{2}+a(j) F+\lambda^{2}(j) I=0 \tag{2.14}
\end{equation*}
$$

Thus

$$
L j M j=M j L j=0
$$

Thus the theorem is proved.

3. Nijenhuis Tensor $F_{a(j), \lambda(j)}$ - structure

The Nijenhuis Tensor $F_{a(j), \lambda(j)}$ - structure is the skew symmetric tensor of type $(1,2)$ given by

$$
\begin{equation*}
N(X, Y)=[\bar{X}, \bar{Y}]+[\overline{\bar{X}, Y}]-\overline{[\bar{X}, Y]}-\overline{[X, \bar{Y}]} \tag{3.1}
\end{equation*}
$$

for arbitrary vector fields X, Y in M^{n}.
Theorem 3.1. We have

$$
\begin{gather*}
N(X, \bar{Y})=N(\bar{X}, Y) \tag{3.2}\\
N(\bar{X}, \bar{Y})=-\lambda^{2}(j) N(X, Y)-a(j) N(X, \bar{Y}), \tag{3.3}\\
N(\bar{X}, \bar{Y})=-\lambda^{2}(j) N(X, Y)-a(j) N(\bar{X}, Y) . \tag{3.4}
\end{gather*}
$$

Proof. Barring X in (3.1), we have

$$
N(\bar{X}, Y)=[\overline{\bar{X}}, \bar{Y}]+[\overline{\bar{X}, Y}]-[\overline{\bar{X}}, Y]-[\overline{\bar{X}}, \overline{\bar{Y}}]
$$

which in view of (1.2) reduces to
(3.5) $N(\bar{X}, Y)=-\lambda^{2}(j)[X, \bar{Y}]-a(j)[\bar{X}, \bar{Y}]-\lambda^{2}(j)[\bar{X}, Y]+\lambda^{2}(j) \overline{[X, Y]}-\overline{[\bar{X}, \bar{Y}]}$.

Barring Y in (3.1) and using (1.2), we have
(3.6) $N(X, \bar{Y})=-\lambda^{2}(j)[\bar{X}, Y]-a(j)[\bar{X}, \bar{Y}]-\lambda^{2}(j)[X, \bar{Y}]+\lambda^{2}(j) \overline{[X, Y]}-\overline{[\bar{X}, \bar{Y}]}$.

From (3.5) and (3.6), we obtain (3.2). Barring X and Y in (3.1) and using (1.2), we have
(3.7) $N(\bar{X}, \bar{Y})=-\lambda^{4}(j)[X, Y]+a(j) \lambda^{2}(j)[X, \bar{Y}]+a(j) \lambda^{2}(j)[\bar{X}, Y]+a^{2}(j)[\bar{X}, \bar{Y}]$

$$
-\lambda^{2}(j)[\bar{X}, \bar{Y}]+\lambda^{2}(j) \overline{[X, \bar{Y}]}+a(j) \overline{[\bar{X}, \bar{Y}]}+\lambda^{2}(j) \overline{[\bar{X}, Y]} .
$$

(3.8) $\lambda^{2}(j) N(X, Y)$

$$
=\lambda^{2}(j)[\bar{X}, \bar{Y}]-\lambda^{4}(j)[X, Y]-a(j) \lambda^{2}(j) \overline{[X, Y]}-\lambda^{2}(j) \overline{[\bar{X}, Y]}-\lambda^{2}(j) \overline{[X, \bar{Y}]}
$$

and
(3.9) $a(j) N(X, \bar{Y})=-a(j) \lambda^{2}[\bar{X}, Y]-a^{2}(j)[\bar{X}, \bar{Y}]-a(j) \lambda^{2}(j)[X, \bar{Y}]$

$$
-a(j) \overline{[\bar{X}, \bar{Y}]}+a(j) \lambda^{2}(j) \overline{[X, Y]}
$$

from (3.1), (3.7), (3.8) and (3.9), we get (3.3).
Equation (3.4) follows from (3.2) and (3.3).

4. Integrability conditions

In this section, we shall establish some results on the integrability of the k distributions $\tilde{\pi}_{m}^{j}$ and π_{m}^{j}.
Theorem 4.1. The necessary and sufficient condition that the k distributions π_{m}^{l} integrable is that

$$
\begin{equation*}
(d M j)(X, Y)=0 \text { for all } j=1,2, \cdots, k \in N \tag{4.1}
\end{equation*}
$$

Proof. Suppose for particular value $j=l$, distribution π_{m}^{l} is integrable. Now

$$
X, Y \in \pi_{m}^{l} \Rightarrow[X, Y] \in \pi_{m}^{l}
$$

Hence

$$
\begin{equation*}
M l(X)=0, \quad M l(Y)=0 \text { and } M l([X, Y])=0 \tag{4.2}
\end{equation*}
$$

we have [3]

$$
\begin{equation*}
(d M l)(X, Y)=X \cdot M l(Y)-Y \cdot M l(X)-M l([X, Y]) . \tag{4.3}
\end{equation*}
$$

Thus in view of equation (4.2), we have

$$
\begin{equation*}
(d M l)(X, Y)=0 \tag{4.4}
\end{equation*}
$$

Similarly it follows that $(d M j)(X, Y)=0$ for all $j=1,2, \cdots, k$.
Hence the condition is necessary.
Suppose conversely that

$$
\begin{gathered}
(d M j)(X, Y)=0 \text { for all } X, Y \in k \text { distributions } \pi_{m}^{j} \\
(d M j)(X, Y)=0 \text { for all } j=1,2, \cdots, k
\end{gathered}
$$

Thus

$$
M j([X, Y])=0 \text { as } M j(X)=0=M j(Y) \text { for all } j=1,2, \cdots, k
$$

Also

$$
\begin{aligned}
& L j([X, Y])=\overline{[X, Y]}-(\alpha(j)-i \beta(j))[X, Y] \text { for all } j=1,2, \cdots, k \\
& =(\alpha(j)+i \beta(j))[X, Y]-(\alpha(j)-i \beta(j))[X, Y] \text { for all } j=1,2, \cdots, k
\end{aligned}
$$

or

$$
\operatorname{Lj}([X, Y])=2 i \beta(j)[X, Y] \text { for all } j=1,2, \cdots, k
$$

Thus it follows that if $X, Y \in k$ distributions π_{m}^{j} then $[X, Y]$ also belongs to k distributions π_{m}^{j}. Thus the k distributions π_{m}^{j} is integrable.

Theorem 4.2. The necessary and sufficient condition for the k distributions $\tilde{\pi}_{m}^{j}$ to be integrable is that

$$
(d L j)(X, Y)=0 \text { for all } j=1,2, \cdots, k
$$

Proof. Proof follows easily in a way similar to that of the Theorem 4.1.
Acknowledgement. The third author gratefully acknowledges the financial support provided by the University Grant Commission (UGC).

References

[1] Lovejoy S. Das and Ram Nivas, On differentiable manifolds with $\left[F_{1}, F_{2}\right](K+1,1)-$ structue, Tensor, N. S., 65(1) (2004), 29-35.
[2] Lovejoy Das, Fiberings on almost r - contact manifolds, Publicationes Mathematicae, Debrecen, Hongrie, 43(1-2)(1993), 1-7.
[3] Lovejoy Das, On $C R$ - structures and F - structure satisfying $F^{K}+(-)^{K+1} F=0$, Rocky Mountain Journal of Mathematics, USA, 36(2006), 885-892.
[4] Lovejoy Das and Ram Nivas, Harmonic morphism on almost r - contact metric manifolds, Algebras Group and Geometries 22(2005), 61-68.
[5] S. Helgason, Differential geometry, Lie groups and symmetric spaces, Academic Press, New York (1978).
[6] S. Ishihara and K. Yano, On integrability conditions of a structure f satisfying $f^{3}+$ $f=0$, Quart. J. Math., Oxford Sem (2) IS (1964), 217-222.
[7] R. S. Mishra, Structures on a Differentiable Manifold and their Applications, Chandrama Prakashan, 50-A, Balrampur House, Allahabad, India, 1984.
[8] B. B. Sinha and R. Sharma, On a special quadratic structures on differentiable manifolds, Indian J. Pure Appl. Math., 9(8)(1978), 811-817.
[9] K. Yano, On a structure defined by a tensor field f of type $(1,1)$ satisfying $f^{3}+f=0$, Tensor N. S., 14(1963), 99-109.

