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INVARIANT NULL RIGGED HYPERSURFACES OF

INDEFINITE NEARLY α-SASAKIAN MANIFOLDS

Mohamed H. A. Hamed and Fortuné Massamba

Abstract. We introduce invariant rigged null hypersurfaces of indefinite

almost contact manifolds, by paying attention to those of indefinite nearly
α-Sasakian manifolds. We prove that, under some conditions, there ex-

ist leaves of the integrable screen distribution of the ambient manifolds
admitting nearly α-Sasakian structures.

1. Introduction

Indefinite nearly α-Sasakian manifolds were investigated in [14] as indefi-
nite almost contact metric structure (M,ϕ, ξ, η, g) such that the Levi-Civita
connection ∇ satisfies

(∇Xϕ)Y + (∇Y ϕ)X = α{2g(X,Y )ξ − η(Y )X − η(X)Y }
for any vector fields X, Y on M . Such a class of manifolds contains the classes
of indefinite nearly cosymplectic and indefinite nearly Sasakian manifolds. In
[14], the authors studied certain null spaces in indefinite nearly α-Sasakian
manifolds, in particular, the quasi-generalized CR-null submanifolds. These
null submanifolds were first defined in [13] in nearly Sasakian settings.

The theory of null submanifolds of a semi-Riemannian manifold is one of
the most important topics of differential geometry. More precisely, null hy-
persurfaces appear in general relativity as models of different types of black
hole horizons (see [2], [3] and [16]). The study of non-degenerate submani-
folds of semi-Riemannian manifolds has many similarities with the Riemann-
ian submanifolds. However, in case the induced metric on the submanifold is
degenerate, the study becomes more difficult and it is strikingly different from
the study of nondegenerate submanifolds [2]. Some of the pioneering work on
null geometry is due to Duggal-Sahin [3], Duggal-Bejancu [2] and Kupeli [5].
Such work motivated many other researchers to invest in the study of null
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submanifolds, for example, [2], [5], [6–12], [13], [14] and many more references
therein.

We are also interested in the technique that led to the construction of a Rie-
mannian metric on a null hypersurface. This was developed in [4] in Lorentzian
case and it is based on the arbitrary choice of a transverse vector field, called
rigging field, from which the authors constructed a null section, called rigged
field and a screen distribution. This technique improves the dependency of the
geometric objects only on the choice of a unique object, namely, the rigging
field and it also introduces a Riemannian structure coupled with it and useful
to study the null hypersurface (see [15], [17] and references therein for more
details). The advantage of the rigging technique is not only a lower number of
arbitrary elections. An adequate choice of the rigging (for example conformal
or closed) gives rise to a screen distribution and a null section with good prop-
erties, which allows us to use the possible symmetries of the ambient manifold.
The second advantage is that all usual tensors of a null submanifold derived
from a rigging are related, unlike if we choose a screen, a transversal screen
and a null section independently. The geometry of null rigging hypersurface
was studied in [4], [15] and references therein. In this paper, we investigate
the effect of rigging in the null hypersurfaces of almost contact structures by
paying attention to those of the indefinite nearly α-Sasakian structures.

This paper is organized as follows. In Section 2 we give some basic definitions
and properties of null hypersurfaces in semi-Riemannian settings. In Section
3, we introduce the null hypersurfaces in indefinite nearly α-Sasakian mani-
folds, supported by some examples. Section 4 deals with the invariant rigged
null hypersurfaces M of indefinite nearly α-Sasakian manifolds. Among other
results, we prove, under some conditions, that there exist leaves of a certain
integrable screen distribution of such null hypersurfaces which have indefinite
nearly α-Sasakian structures.

2. Preliminaries

Let (M, g) be a (2n+1)-dimensional semi-Riemannian manifold with index
s, 0 < s < 2n + 1, and let (M, g) be a null hypersurface of M with g = g|M .

It is well known that the normal bundle TM⊥ of the null hypersurface M is a
vector subbundle of TM of rank 1. A complementary vector bundle S(TM) of
TM⊥ in TM is a rank (2n − 1) non-degenerate distribution over M , called a
screen distribution on M , such that

(2.1) TM = S(TM) ⊥ TM⊥,

where ⊥ denotes the orthogonal direct sum. Existence of S(TM) is secured
provided M is paracompact.

Throughout the paper, all manifolds are supposed to be paracompact and
smooth. We denote by Γ(Ξ) the set of smooth sections of the vector bundle Ξ.
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A null hypersurface with a specific screen distribution is denoted by (M, g,
S(TM)). We know [2] that for such a triplet, there exists a unique rank 1
vector subbundle tr(TM) of TM over M , such that for any non-zero section E
of TM⊥ on a coordinate neighborhood U ⊂ M , there exists a unique section
N of tr(TM) on U satisfying

(2.2) g(N,E) = 1, and g(N,N) = g(N,W ) = 0, ∀W ∈ Γ(S(TM)|U ).

Then, TM is decomposed as follows:

(2.3) TM = TM ⊕ tr(TM) = (TM⊥ ⊕ tr(TM)) ⊥ S(TM).

We call tr(TM) and N the transversal vector bundle and the null transversal
vector field of M with respect to S(TM), respectively. The local Gauss and
Weingarten formulas are, for any X, Y ∈ Γ(TM |U ),

∇XY = ∇XY +B(X,Y )N,(2.4)

∇XN = −ANX + τ(X)N,(2.5)

and ∇XPY = ∇∗
XPY + C(X,PY )E,(2.6)

∇XE = −A∗
EX − τ(X)E,(2.7)

where ∇ is the Levi-Civita connection of M and P is the projection morphism
of Γ(TM) on Γ(S(TM)) with respect to the decomposition (2.1). Also, ∇ and
∇∗ are the linear connections, B and C are the local second fundamental forms,
AN and A∗

E are the shape operators on TM and S(TM), respectively, and τ is

a 1-form on TM . From the fact that B(X,Y ) = g(∇XY,E), we know that B
is independent of the choice of a screen distribution and satisfies B(·, E) = 0.
Unfortunately, the induced connection ∇ on TM is not metric and satisfies

(2.8) (∇Xg)(Y,Z) = B(X,Y )θ(Z) +B(X,Z)θ(Y ),

where θ is a differential 1-form locally defined on M by θ(·) := g(N, ·). How-
ever, the connection ∇∗ on S(TM) is metric. The above two local second
fundamental forms of M and S(TM) are related to their shape operators by

B(X,PY ) = g(A∗
EX,PY ), g(A∗

EX,N) = 0,

C(X,PY ) = g(ANX,PY ), g(ANX,N) = 0,

for any X,Y ∈ Γ(TM |U ).

3. Null hypersurfaces of indefinite nearly α-Sasakian manifolds

Let M be a (2n+ 1)-dimensional manifold endowed with an almost contact
structure (ϕ, ξ, η), i.e., ϕ is a tensor field of type (1, 1), ξ is a vector field, and
η is a 1-form satisfying [1]

(3.1) ϕ
2
= −I+ η ⊗ ξ, η(ξ) = 1.
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It follows that ϕξ = 0, η◦ϕ = 0 and rank(ϕ) = 2n. Then (ϕ, ξ, η, g) is called an
indefinite almost contact metric structure on M if (ϕ, ξ, η) is an almost contact
structure on M and g is a semi-Riemannian metric on M such that [13],

(3.2) g(ϕX, ϕY ) = g(X,Y )− η(X) η(Y )

for any vector fields X, Y on M . It follows that the (1, 1)-tensor field ϕ is
skew-symmetric and η(X) = g(ξ,X). If, moreover [14],

(3.3) (∇Xϕ)Y + (∇Y ϕ)X = α{2g(X,Y )ξ − η(Y )X − η(X)Y }

for any vector fields X, Y on M , where ∇ is the Levi-Civita connection for
the semi-Riemannian metric g, we call (M,ϕ, ξ, η, g) an indefinite nearly α-
Sasakian manifold. More precisely, (M,ϕ, ξ, η, g) is called nearly cosymplectic
(resp. nearly Sasakian [13] and references therein) manifold if α = 0 (resp. α =
1).

Example 3.1. We consider the three dimensional manifold M = {(x, y, z) ∈
R3 : y ̸= 0}, where (x, y, z) are the standard coordinates in R3. We choose the
vector fields

e1 = ex
∂

∂y
, e2 = ex

{
∂

∂x
+ 2y

∂

∂z

}
, e3 =

∂

∂z
,

which are linearly independent at each point of M . Let g be the semi-Rie-
mannian metric defined by g(e1, e1) = g(e2, e2) = −g(e3, e3) = −1, g(ei, ej) =
0, i ̸= j = 1, 2, 3, that is, the form of the metric becomes

g = e−2x
{
−(1 + 4y2e2x)dx2 − dy2 + dz2

}
,

which is a semi-Riemannian metric. Let η be the 1-form defined by η(X) =
g(X, ξ) for any X ∈ Γ(TM) with ξ = e3. Let ϕ be the (1,1)-tensor field defined
by ϕe1 = e2, ϕe2 = −e1, ϕξ = 0. Using the linearity of ϕ and g, we have

ϕ
2
X = −X + η(X)ξ, g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y )

for any X,Y ∈Γ(TM). Then we have [e1, e2]=−exe1+2e
2xξ, [e1, ξ]=[e2, ξ]=0.

The connection ∇ of the metric tensor g is given by Koszul’s formula which is
given by

2g(∇XY,W ) = X(g(Y,W )) + Y (g(X,W ))−W (g(X,Y ))

− g(X, [Y,W ])− g(Y, [X,W ]) + g(W, [X,Y ]).

Using Koszul’s formula, we get the following

∇e1e1 = exe2, ∇e1e2 = −exe1 + e2xξ, ∇e1ξ = e2xe2, ∇e2e1 = −e2xξ,

∇e2e2 = 0, ∇e2ξ = −e2xe1, ∇ξe1 = e2xe2, ∇ξe2 = −e2xe1, ∇ξξ = 0,

and also

(∇e1ϕ)e1 = e2xξ, (∇e1ϕ)ξ = e2xe1, (∇e1ϕ)e2 = 0, (∇e2ϕ)e1 = 0,

(∇e2ϕ)e2 = e2xξ, (∇e2ϕ)ξ = e2xe2, (∇ξϕ)e1 = 0, (∇ξϕ)e2 = 0.



INVARIANT NULL RIGGED HYERSURFACES 497

Therefore, the manifold M is a nearly α-Sasakian manifold with α = −e2x.

The concepts of nearly cosymplectic and nearly Sasakian manifolds were
defined in [1] for Riemannian metric. We adapt the same definitions in the
case of semi-Riemannian settings.

Let Ω be the fundamental 2-form of M defined by

Ω(X,Y ) = g(X,ϕY )

for any vector fields X, Y on M . Replacing Y by ξ in (3.3) we obtain

∇Xξ + ϕ(∇ξϕ)X = −αϕX, ∀X ∈ Γ(TM).(3.4)

Let H be the (1,1)-tensor on M given by

(3.5) HX = ϕ(∇ξϕ)X

for any X ∈ Γ(TM) such that (3.4) reduces to

(3.6) ∇Xξ = −HX − αϕX.

A straightforward calculation shows that the linear operator H satisfies the
following properties:

H ϕ+ ϕH = 0, Hξ = 0, η ◦H = 0 and(3.7)

g(HX,Y ) = −g(X,H Y )(3.8)

for any X,Y ∈ Γ(TM). It is easy to see that ∇ξξ = 0 and the relation (3.8)

means that H is skew-symmetric.
Note that, for any X ∈ Γ(TM),

(3.9) HX = H
T
X +H

N
X,

where H
T
X and H

N
X are the tangential and normal components of HX,

respectively.
Moreover, M is indefinite α-Sasakian if and only if H vanishes identically

on M (see [1]). As an example, we have the following.

Example 3.2. Let R7 be the 7-dimensional real number space. Let us consider
{xi}1≤i≤7 as Cartesian coordinates on R7 and define with respect to the natural

field of frames
{

∂
∂xi

}
a tensor field ϕ of type (1, 1) by:

ϕ(
∂

∂x1
) = − ∂

∂x2
, ϕ(

∂

∂x2
) =

∂

∂x1
+ x4

∂

∂x7
, ϕ(

∂

∂x3
) = − ∂

∂x4
,

ϕ(
∂

∂x4
) =

∂

∂x3
+ x6

∂

∂x7
, ϕ(

∂

∂x5
) = − ∂

∂x6
, ϕ(

∂

∂x6
) =

∂

∂x5
, ϕ(

∂

∂x7
) = 0.

The 1-form η is defined by η = dx7 − x4dx1 − x6dx3. The vector field ξ is
defined by ξ = ∂

∂x7
. It is easy to check (3.1) and thus (ϕ, ξ, η) is an almost

contact structure on R7. Finally, we define a metric g on R7 by

g = (x2
4 − 1)dx2

1 − dx2
2 + (x2

6 + 1)dx2
3 + dx2

4 − dx2
5 − dx2

6 + dx2
7
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− x4dx1 ⊗ dx7 − x4dx7 ⊗ dx1 + x4x6dx1 ⊗ dx3 + x4x6dx3 ⊗ dx1

− x6dx3 ⊗ dx7 − x6dx7 ⊗ dx3,

with respect to the natural field of frames. It is easy to check that g is a semi-
Riemannian metric and (ϕ, ξ, η, g) given above is a nearly α-Sasakian structure
on R7 with α = 1 and the (1,1)-tensor field H vanishes identically.

Also, for any X,Y ∈ Γ(TM) and using (3.2) and (3.8), the Lie derivative
Lξ with respect to ξ is given by

(Lξg)(X,Y ) = −g(HX,Y )− αg(ϕX, Y )− g(X,H Y )− αg(X,ϕY )

= 0.

This means that in a nearly α-Sasakian manifold, the characteristic vector field
ξ is g-Killing. Note that, for any X,Y , Z ∈ Γ(TM),

g((∇Zϕ)X,Y ) = −g(X, (∇Zϕ)Y ),

which means that the tensor ∇ϕ is skew-symmetric.
Let (M,ϕ, ξ, η, g) be an indefinite nearly α-Sasakian manifold and (M, g) be

a null hypersurface of (M, g), tangent to the vector field ξ, i.e., ξ ∈ TM .
If E is a local section of TM⊥, then g(ϕE,E) = 0, and ϕE is tangent to M .

Thus ϕ(TM⊥) is a distribution on M of rank 1.
Choose a screen distribution S(TM) of M such that it contains ϕE and ξ.

Using (3.2), we have

g(ϕN,E) = −g(N,ϕE) = 0, g(N,ϕN) = 0,

where N ∈ Γ(tr(TM)). This implies that ϕN is also tangent to M and belongs
to S(TM). From (3.1), we have g(ϕN, ϕE) = 1. Therefore,

ϕ(TM⊥)⊕ ϕ(tr(TM)),

is a non-degenerate vector subbundle of S(TM) of rank 2.
Therefore, we have the following.

Lemma 3.3. Let (M, g, S(TM)) be a null hypersurface of an indefinite nearly
α-Sasakian manifold (M,ϕ, ξ, η, g) with ξ ∈ TM . If the screen distribution
S(TM) of M contains ϕE and ξ, then g cannot be a Lorentzian metric.

Proof. Assume that g is Lorentzian metric. Then in M , there is a unique null
direction, say E. Since ξ ∈ TM , we have

g(ϕE, ϕE) = g(E,E)− η(E)η(E) = 0.

This means that ϕE is also a null vector in M . Then necessarily ϕE = fE
for a certain function f . Using (2.2), we have f = 0. Likewise, ϕN = 0. This
contradicts the fact that E and N are non-zero null vectors and completes the
proof. □
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Since S(TM) was chosen so that ξ belongs to S(TM) and g(ϕ ·, ξ) = 0, there
exists a non-degenerate distribution D0 of rank (2n− 4) on M such that

(3.10) S(TM) = {ϕ(TM⊥)⊕ ϕ(tr(TM))} ⊥ D0 ⊥ Rξ,

where Rξ is the distribution spanned by ξ. Then the distributionD0 is invariant
respect ϕ, i.e., ϕ(D0) = D0. From (2.1) and (3.10), we obtain the decomposition

TM = {ϕ(TM⊥)⊕ ϕ(tr(TM))} ⊥ D0 ⊥ Rξ ⊥ TM⊥,

TM = {ϕ(TM⊥)⊕ ϕ(tr(TM))} ⊥ D0 ⊥ Rξ ⊥ (TM⊥ ⊕ tr(TM)).

Let us consider the distributions on M , D = TM⊥ ⊥ ϕ(TM⊥) ⊥ D0 and

D
′
= ϕ(tr(TM)). Then D is invariant respect ϕ, i.e., ϕ(D) = D and

(3.11) TM = (D ⊕D
′
) ⊥ Rξ.

Now, we consider the local null vector fields U = −ϕN and V = −ϕE. Then,
from (3.11), a vector field X on M is decomposed as

(3.12) X = RX +QX + η(X)ξ, QX = ω(X)U,

where R and Q are the projection morphisms of TM into D and D
′
, respec-

tively, and ω is a differential 1-form on M defined by

(3.13) ω(·) = g(·, V ).

Now applying ϕ to (3.12) and we note that ϕ
2
N = −N , and using (3.1) we

obtain

(3.14) ϕX = ϕX + ω(X)N, ∀X ∈ Γ(TM),

where ϕ is a tensor field of type (1, 1) defined on M given by ϕX := ϕRX, and
we also have

(3.15) ϕ2X = −X + η(X)ξ + ω(X)U.

Now applying ϕ to ϕ2X and since ϕU = 0, we obtain ϕ3 + ϕ = 0, which shows
that ϕ is an f -structure of constant rank [18]. By using (3.1), we derive, for
any X, Y ∈ Γ(TM),

(3.16) g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y )− v(X)ω(Y )− v(Y )ω(X),

where v is a 1-form locally defined on M by

(3.17) v(·) = g(U, ·).

For any X, Y ∈ Γ(TM),

(3.18) g(X,ϕY ) + g(ϕX, Y ) = −{θ(X)ω(Y ) + θ(Y )ω(X)}.

Also,

g(h(ϕX, Y ), E) = − g(h(X,ϕY ), E)− (∇Xω)Y − (∇Y ω)X + 2g(ϕh(X,Y ), E)

− τ(X)ω(Y )− τ(Y )ω(X).(3.19)
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Since h = B ⊗N , we have g(ϕh(·, ·), E) = B(·, ·)g(ϕN,E) = 0, and therefore

B(ϕX, Y ) = −B(X,ϕY )− {(∇Xω)Y + (∇Y ω)X

+ τ(X)ω(Y ) + τ(Y )ω(X)}.(3.20)

Therefore, we have the following useful identities.

Proposition 3.4. Let (M, g, S(TM)) be a null hypersurface of an indefinite
nearly α-Sasakian manifold (M,ϕ, ξ, η, g) with ξ ∈ TM . Then, we have

∇Xξ = −H
T
X − αϕX,(3.21)

B(X, ξ) = − g(HX,E)− αω(X),(3.22)

(∇Xϕ)Y + (∇Y ϕ)X = α{2g(X,Y )ξ − η(Y )X − η(X)Y }+ ω(X)ANY

+ ω(Y )ANX + 2B(X,Y )ϕN(3.23)

for any vector fields X and Y on M .

Proof. For any X ∈ Γ(TM),

∇Xξ +B(X, ξ)N = −H
T
X −H

N
X − αϕX − αω(X)N.

Comparing the tangential and normal components, we obtain (3.21) and

B(X, ξ)N = −H
N
X − αω(X)N.

By g-doting this relation by E and using the fact that g(H
N ·, E) = g(H·, E),

we get (3.22). Now, for any X, Y ∈ Γ(TM),

(∇Xϕ)Y = (∇Xϕ)Y −X(ω(Y ))N + ω(Y )ANX − τ(X)ω(Y )N −B(X,ϕY )N

+B(X,Y )ϕN + ω(∇XY )N.(3.24)

Therefore, using (3.20) and (3.24), one obtains

(∇Xϕ)Y + (∇Y ϕ)X

= (∇Xϕ)Y + (∇Y ϕ)X − {X(ω(Y )) + Y (ω(X))}N
+ ω(X)ANY + ω(Y )ANX − {τ(X)ω(Y ) + τ(Y )ω(X)}N
− {B(X,ϕY ) +B(Y, ϕX)}N + {ω(∇XY ) + ω(∇Y X)}N
+ 2B(X,Y )ϕN

= α{2g(X,Y )ξ − η(Y )X − η(X)Y }+ ω(X)ANY + ω(Y )ANX

+ 2B(X,Y )ϕN,

which completes the proof. □

Note that, using (3.12), the decomposition in (3.9) is explicitly defined on
the null hypersurface M as follows: for any X ∈ Γ(TM),

HX = H
T
X +H

N
X,

where H
T
X := HRX and H

N
X := HQX = ω(X)HU .
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Now using (3.21) and (3.22), the Lie derivative of g with respect to the
characteristic vector field ξ is given by, for any X, Y ∈ Γ(TM),

(Lξg)(X,Y ) = − {g(HX,E) + αω(X)}θ(Y )− {g(HY,E) + αω(Y )}θ(X)

− g(H
T
X,Y )− g(X,H

T
Y )− α{g(ϕX, Y ) + g(X,ϕY )}.(3.25)

Using (3.18), the relation (3.25) becomes,

(Lξg)(X,Y ) = − g(HX,E)θ(Y )− g(HY,E)θ(X)

− g(H
T
X,Y )− g(X,H

T
Y ).(3.26)

Therefore we have the following.

Lemma 3.5. Let (M, g, S(TM)) be a null hypersurface of an indefinite nearly
α-Sasakian manifold (M,ϕ, ξ, η, g) with ξ ∈ TM . If HU = 0, then:

(i) The characteristic vector field ξ is Killing on M if and only if for
any X ∈ Γ(TM), HX does not have a component in the direction of
tr(TM).

(ii) If the screen distribution S(TM) is integrable, the line bundle Rξ de-
fined in (3.11) is a g-Killing distribution as a subbundle of S(TM).

4. Invariant null rigging hypersurfaces

In this section, we study invariant null rigging hypersurface of indefinite
nearly α-Sasakian manifolds.

Let (M, g, S(TM)) be a null hypersurface of an indefinite nearly α-Sasakian
manifold (M,ϕ, ξ, η, g) of index q ∈ {1, 2, . . . , 2n} with ξ ∈ TM .

The null hypersurface M is said to be invariant in M [11] if M is tangent
to the structure vector field ξ and, for any X ∈ Γ(TM),

ϕX ∈ Γ(TM),

that is,

(4.1) ϕX = ϕX.

As an example of invariant hypersurfaces, we have the following.

Example 4.1. Let M be a hypersurface of (R7, ϕ, ξ, η, g) in Example 3.2 de-
fined as M = {(x1, . . . , x7) ∈ R7 : x5 = x4}. Thus, the tangent space TM is
spanned by {ei}1≤i≤6, where

e1 =
∂

∂x1
, e2 =

∂

∂x2
, e3 =

∂

∂x3
, e4 =

∂

∂x4
+

∂

∂x5
, e5 =

∂

∂x6
, e6 = ξ

and the 1-dimensional distribution TM⊥ of rank 1 is spanned by E, where

E =
∂

∂x4
+

∂

∂x5
.
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It follows that TM⊥ ⊂ TM . Then M is a 6-dimensional lightlike hypersurface
of R7. Also, the transversal bundle tr(TM) is spanned by

N =
1

2
(

∂

∂x4
− ∂

∂x5
).

On the other hand, by using the almost contact structure of R7 and also by
taking into account of the decomposition (3.10), the distribution D0 is spanned
by {F, ϕF}, where F = e2, ϕF = e1 + x4ξ and the distributions Rξ, ϕ(TM⊥)
and ϕ(tr(TM)) are spanned, respectively, by ξ, ϕE = e3 − e5 + x6ξ and ϕN =
1
2 (e3 + e5 + x6ξ). Hence M is a null hypersurface of R7. Denote by ∇ the

Levi-Civita connection on R7. Then, by straightforward calculations, the non-
vanishing covariant derivative components of N and E along M are given by,

∇e1E = 2∇e1N = −1

2
x4e1 −

1

2
(x2

4 + 1)ξ,

∇e3E = 2∇e3N = −1

2
x6e1 −

1

2
x4x6ξ,

∇ξE = 2∇ξN =
1

2
e1 +

1

2
x4ξ.

Using these equations above, the differential 1-form τ vanishes, i.e., τ(X) =
0 for any X ∈ Γ(TM). So, from the Gauss and Weingarten formulae, the
non-vanishing components of the shape operators AN and A∗

E are given by
A∗

Ee1 = 2ANe1 = 1
2x4e1 + 1

2 (x
2
4 + 1)ξ, A∗

Ee3 = 2ANe3 = 1
2x6e1 + 1

2x4x6ξ

and A∗
Eξ = 2ANξ = − 1

2e1 − 1
2x4ξ. From these relations trAN = 0, i.e., the

shape operator AN is trace-free. The non-vanishing components of the local
second fundamental form B are given by B(e1, e1) = −x4, B(e1, e3) = − 1

2x6

and B(e1, e6) =
1
2 . It is easy to check that B(X, ξ) = 0 for any X ∈ Γ(TM).

Hence, M is an invariant null hypersurface.

Since the null hypersurface M is invariant, the 1-form ω vanishes identically
on M and the relations (3.20) becomes, for any X,Y ∈ Γ(TM),

(4.2) B(ϕX, Y ) = −B(X,ϕY ).

Using (3.15) and (4.2), one obtains

(4.3) B(ϕX, ϕY ) = B(X,Y ) + η(Y )g(HX,E).

Since the local fundamental form B is symmetric, the relation (4.3) leads to,
for any X,Y ∈ Γ(TM),

g(HX,E)Y = g(HY,E)X.

This implies that g(HX,E) = 0. Likewise g(HϕX, V ) = 0. Therefore, we have
the following.

Lemma 4.2. Let (M, g, S(TM)) be an invariant null hypersurface of an in-
definite nearly α-Sasakian manifold (M, g) with ξ ∈ TM . Then, for any
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X ∈ Γ(TM),

(4.4) HX ∈ Γ(D).

Moreover, for any X,Y ∈ Γ(TM),

(4.5) B(ϕX, ϕY ) = B(X,Y ).

Proof. The proof follows from a straightforward calculation. □

Next we introduce the concept of rigging for our null hypersurfaces by the
adapting the one introduced by Gutierrez and Olea in [4] for null hypersurfaces
of Lorentzian manifolds.

Definition 4.3. Let (M, g) be a null hypersurface of semi-Riemannian man-
ifold (M, g). A rigging for M is a vector field L defined on some open set
containing M such that Lp /∈ TxM for any p ∈ M .

Let L be a rigging for M . Then L is a vector field over M and one can set
αL to be the 1-form g-metrically equivalent to L, i.e., αL = g(L, ·). One sets

θL = i∗αL and g̃ = g + θL ⊗ θL.

Here i : M ↪→ M is the canonical inclusion.

Lemma 4.4. g̃ is a non-degenerate metric on M .

Proof. Let u ∈ TpM such that g̃p(u, v) = 0 for every v ∈ TpM . In particular,
for E ∈ TM⊥, one has 0 = g̃p(u,Ep) = g(Ep, Lp)g(u, Lp). Since E ∈ Γ(TM⊥)
and g is non-degenerate, gp(Ep, Lp) ̸= 0 and then gp(u, Lp) = 0. Putting this

together with the fact that TpM |M = Span{Lp}⊕TpM , one has g(u, v) = 0 for
every v ∈ TpM , which implies that u = 0, since gp is non-degenerate metric. □

The rigged vector field of L is the g̃-metrically equivalent vector to the 1-form
θL and it is denoted by E.

From now on L = N is a null rigging N and E is the associated rigged vector
field. All of them are defined in an open set containing M (thus globally on
M) such that (2.1), (2.2) and (2.3) hold. In this case, we denote the 1-form θN

by θ, that is,

(4.6) θ(·) = i∗α(·),
with α = αN = g(N, ·). In fact, the rigged vector field E is the unique null
vector field in M such that g(N,E) = 1. Moreover, E is g̃-unitary.

The triple (M, g,N) is called a rigged null hypersurface and g̃ the associated
metric, it is a semi-Riemannian metric of index (q− 1). One defines the screen
distribution and the transversal bundle associated to the chosen rigging N by

S(TM) = ker(θ) and tr(TM) = Span{N}.
If (M, g,N) is a rigged null hypersurface of an indefinite nearly α-Sasakian
manifold (M, g) with ξ ∈ TM , then

ker(θ) = {ϕ(TM⊥)⊕ ϕ(tr(TM))} ⊥ D0 ⊥ Rξ.
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A rigged null hypersurface (M, g,N) is said to be closed if the rigging N is
closed, i.e., the 1-form θ is closed.

We need the relationship between the Levi-Civita connections of both g and

g̃ acting on vector fields in TM . Call ∇̃ the Levi-Civita connection induced on

M by g̃ and σ = ∇− ∇̃ which is a symmetric tensor on TM . We can suppose
that the involved Lie brackets vanish. The Koszul identity leads us to write,
for any X, Y , Z ∈ Γ(TM),

2g(∇XY, Z) = 2g̃(∇̃XY, Z)− {∇̃X(θ ⊗ θ)(Y,Z) + ∇̃Y (θ ⊗ θ)(X,Z)}

+ ∇̃Z(θ ⊗ θ)(X,Y ).

Taking into account the following identities

2dθ(X,Y ) = (∇̃Xθ)Y − (∇̃Y θ)X and (LE g̃)(X,Y ) = (∇̃Xθ)Y + (∇̃Y θ)X,

one obtains

2g(∇XY, Z) = 2g̃(∇̃XY, Z)− θ(Z)(LE g̃)(X,Y ) + 2θ(Y )dθ(Z,X)

+ 2θ(X)dθ(Z, Y ).

Therefore,

(4.7) g(σXY,Z) = −1

2
θ(Z)(LE g̃)(X,Y ) + θ(Y )dθ(Z,X) + θ(X)dθ(Z, Y ).

Proposition 4.5. Given X,Y, Z ∈ Γ(TM),

σXY = −1

2
(LE g̃)(X,Y )ξ + θ(Y )(iXdθ)♯g + θ(X)(iY dθ)

♯g,

where g((iXdθ)♯g, Y ) = dθ(X,Y ) and LE is the Lie derivative with respect to
the vector field E.

Now taking σM = ∇− ∇̃, which is also symmetric and we have

σ − σM = B ⊗N.

Therefore,

σM
X Y = − 1

2
(LE g̃)(X,Y )ξ + θ(Y )(iXdθ)♯g

+ θ(X)(iY dθ)
♯g −B(X,Y )N.

The fact that both ∇ and ∇̃ are connections on M makes the computations
easier with σM instead of σ. The following basic identities holds. For any
W ∈ Γ(TM) and X,Y, Z ∈ Γ(S(TM)), we have the following [4]:

g̃(σM
X W,X) = g(σM

X W,X) = 0,(4.8)

g̃(σM
X Y,Z) = g(σM

X Y, Z) = 0,(4.9)

g̃(σM
WE,E) = −τ(W ).(4.10)
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The null mean curvature of the null hypersurface M is related with g̃ as follows.
From (4.8), (4.9) and (4.10), there exists a smooth function φ on M such that

σM
X Y = φE.

Thus, for any X,Y, Z ∈ Γ(S(TM)),

∇̃XY = ∇∗
XY + (C(X,Y )− φ)E,

where
C(X,Y )− φ = g̃(∇̃XY,E) = −g̃(∇̃XE, Y ).

This implies that, for any X,Y ∈ Γ(S(TM)),

σM
X Y =

{
C(X,Y ) + g̃(∇̃XE, Y )

}
E.

Lemma 4.6. For any X,Y, Z ∈ Γ(S(TM)),

(4.11) g̃(σM
X Y, Z) = −g̃(Y, σM

X Z) and g(σXY, Z) = −g(Y, σXZ).

Proof. For any X,Y, Z ∈ Γ(S(TM)),

g̃(σM
X Y,Z) = g̃(∇XY,Z)− g̃(∇̃XY,Z)

= − (∇Xg)Y +X(g(Y, Z))− g(Y,∇XZ)−X(g̃(Y,Z))

+ g̃(Y, ∇̃XZ)

= − g̃(Y, σM
X Z).

The second equality follows from a similar calculation and completes the proof.
□

The following identities are very important.

Lemma 4.7. For any X,Y, Z ∈ Γ(S(TM)),

g̃(σM
X Z, Y ) = −g̃(X,σM

Y Z) and g(σXZ, Y ) = −g(X,σY Z).

Proof. For any X,Y, Z ∈ Γ(S(TM)), and using the symmetry proper of σM

and (4.11), we have

g̃(σM
X Z, Y ) = g̃(σM

Z X,Y ) = −g̃(X,σM
Z Y ) = −g̃(X,σM

Y Z).

Similarly, one obtains the second relation. □

Using Lemmas 4.6 and 4.7, the Lie derivative LE with respect to the vector
field E is given by

(LE g̃)(X,Y ) = g̃(∇̃XE, Y ) + g̃(X, ∇̃Y E)

= g(∇XE, Y )− g̃(σM
X E, Y ) + g(X,∇Y E)− g̃(X,σM

Y E)

= −2B(X,Y )− g̃(σM
X E, Y ) + g̃(Y, σM

X E)

= −2B(X,Y ).(4.12)

This means that M is totally geodesic if and only if E is g̃-orthogonally Killing
and it is totally umbilic if and only if E is g̃-orthogonally conformal.
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If we consider the rigging vector field N to be closed, then its rigged vector
field E is also closed, so the screen distribution S(TM) is integrable. In this
case and using (4.7), we have, for any X ∈ Γ(S(TM)),

g(∇̃EE,X) = −g(σEE,X) = 2dθ(E,X) = 0.

This means that ∇̃EE = 0 and using (4.12), for any X,Y ∈ Γ(S(TM)),

−2B(X,Y ) = (LE g̃)(X,Y ) = 2g̃(∇̃XE, Y ).

Therefore,

(4.13) ∇̃XY = ∇∗
XY +B(X,Y )E.

Moreover, since B(X,Y ) = g(A∗
EX,Y ), it follows

∇̃XE = −A∗
EX.

We have the almost contact version of Corollary 3.14 given in [4].

Proposition 4.8. Let (M, g,N) be an invariant closed rigged null hypersurface
of an indefinite nearly α-Sasakian manifold (M, g) with ξ ∈ TM . Then,

(i) M is totally geodesic if and only if the rigged vector field E is g̃-parallel.
(ii) M is totally geodesic (resp. umbilical) if and only if each leaf of S(TM)

is totally geodesic (resp. umbilical) as a hypersurface of (M, g,N).

In general, if the leaves of an integrable screen distribution are totally umbilical
in (M, g), then M is totally umbilical. The converse does not hold and this
lack of symmetric hide the geometric meaning of umbilicity in the null case.
However, the converse does hold in (M, g,N), which suggests the convenience
of the rigging construction.

Lemma 4.9. Let (M, g,N) be an invariant closed rigged null hypersurface of
an indefinite nearly α-Sasakian manifold (M, g) with ξ ∈ TM . Then,

C(X, ξ) = −θ(HX)− αv(X)

for any X ∈ Γ(TM). Moreover,

(4.14) ∇̃Xξ = −HX − αϕX + {θ(HX) + αv(X)}E.

Proof. From (2.6), (3.21) and (4.13) and Lemma 4.2, one has, for any X ∈
Γ(TM), B(X, ξ) = 0 and

∇̃Xξ = ∇∗
Xξ = ∇Xξ − C(X, ξ)E

= −H
T
X − αϕX − C(X, ξ)E.

By g̃-doting this relation with E, we obtain

0 = g̃(∇̃Xξ, E) = −g̃(HX,E)− αg̃(ϕX,E)− C(X, ξ)

= −θ(HX)− αv(X)− C(X, ξ),

which completes the proof. □
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In the same settings as in Lemma 4.9, and using (3.8) and (3.18), the Lie
derivative of g̃ with respect to the characteristic vector field is given by, for any
X,Y ∈ Γ(S(TM)),

(Lξ g̃)(X,Y ) = g̃(∇̃Xξ, Y ) + g̃(X, ∇̃Y ξ)

= − g̃(HX,Y )− α g̃(ϕX, Y )− g̃(HY,X)

− α g̃(ϕY,X) = 0.

Therefore, we have the following.

Lemma 4.10. Let (M, g,N) be an invariant closed rigged null hypersurface of
an indefinite nearly α-Sasakian manifold (M, g) with ξ ∈ TM . Then, the line
bundle Rξ is a g̃-Killing distribution as a subbundle of S(TM).

Now, let (M, g,N) be an invariant closed rigged null hypersurface of an
indefinite nearly α-Sasakian manifold (M, g) with ξ ∈ TM . Then, using (3.23)
and (4.2), for any X,Y ∈ Γ(TM),

(∇̃Xϕ)Y + (∇̃Y ϕ)X

= (∇Xϕ)Y + (∇Y ϕ)X − σM
X ϕY + ϕσM

X Y − σM
Y ϕX + ϕσM

Y X

= α{2g(X,Y )ξ − η(Y )X − η(X)Y }+ 2B(X,Y )ϕN

− {C(X,ϕY ) + C(Y, ϕX)}E + 2{C(X,Y )−B(X,Y )}ϕE.

On the other hand,

(∇̃Xϕ)Y + (∇̃Y ϕ)X = (∇∗
Xϕ)Y + (∇∗

Y ϕ)X − 2B(X,Y )ϕE.

Therefore, for any X,Y ∈ Γ(S(TM)),

(∇∗
Xϕ)Y + (∇∗

Y ϕ)X = α{2g(X,Y )ξ − η(Y )X − η(X)Y }+ 2B(X,Y )ϕN

− {C(X,ϕY ) + C(Y, ϕX)}E + 2C(X,Y )ϕE.(4.15)

We have the following.

Theorem 4.11. Let (M, g,N) be an invariant closed rigged null hypersurface
of an indefinite nearly α-Sasakian manifold (M, g) with ξ ∈ TM . Assume that
the smooth 1-form v defined in (3.17) vanishes identically on a chosen parallel
screen distribution S(TM). Then M is totally geodesic if and only if each leaf
of S(TM), immersed in (M, g,N) as a submanifold, has a nearly α-Sasakian
structure.

Proof. The proof follows from the relation (4.15) and the fact that if v = 0 on
S(TM), then for any X ∈ Γ(S(TM)), ϕX ∈ Γ(S(TM)). □

The notion of totally geodesic or umbilic hypersurface also has sense in
the degenerate case and they do not depend on the choice of the null section
neither the screen distribution. Indeed, M is totally geodesic if B = 0 and
totally umbilical if B = ρ g for certain ρ ∈ C∞(M). If the function ρ ̸= 0, M
is said to be proper totally umbilical.
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If the null hypersurface M with ξ ∈ TM is totally umbilical, then

ρ = B(ξ, ξ) = −g(Hξ,E)− αω(ξ) = 0.

Therefore, M is totally geodesic.

Theorem 4.12. There exist no proper totally umbilical invariant (rigged) null
hypersurfaces in nearly α-Sasakian manifolds.

Proof. Let (M, g) be an invariant null hypersurface of a nearly α-Sasakian
manifold (M, g) with ξ ∈ TM . Assume that M is proper totally umbilical.
Then, for any X,Y ∈ Γ(TM), B(X,Y ) = ρg(X,Y ). Using (3.16) and (4.5)
and the fact that ω(X) = ω(Y ) = 0, we have

ρg(X,Y ) = B(X,Y ) = B(ϕX, ϕY ) = ρ{g(X,Y )− η(X)η(Y )}.

This leads to ρη(X)η(Y ) = 0, that is, ρ = 0, a contradiction. □

It follows from Theorem 4.12 that a nearly α-Sasakian manifold M does
not admit any non-totally geodesic, totally umbilical null hypersurface. In
other words, totally umbilical invariant (rigged) null hypersurfaces in nearly
α-Sasakian manifolds are always minimal.

Let us consider the following distribution

(4.16) D̂ =
{
ϕ(TM⊥)⊕ ϕ(tr(TM))

}
⊥ D0,

so that the tangent space of M is written

(4.17) TM = D̂ ⊥ ⟨ξ⟩ ⊥ TM⊥.

Let P̂ be the morphism of S(TM) on D̂ with respect to the orthogonal decom-
position of S(TM) such that

P̂X = PX − η(X)ξ, ∀X ∈ Γ(TM).

It is easy to check that P̂ is also a projection. We have, for any X,Y ∈ Γ(TM),

B(X,PY ) = B(X, P̂Y )− η(Y ){g(HY,E) + αω(Y )},

C(X,PY ) = C(X, P̂Y ) + η(Y ){g(HY,N) + αv(Y ))}.

Now, referring to the decomposition (4.17), for any X ∈ Γ(TM), Y ∈ Γ(D̂),
we have

∇XY = ∇̂XY + ĥ(X,Y ),

where ∇̂ is a linear connection on the bundle D̂ and

ĥ : Γ(TM)× Γ(D̂) −→ Γ(⟨ξ⟩ ⊥ TM⊥)

is F(M)-bilinear. Let U ⊂ M be a coordinate neighborhood. Then, using
(4.17), the relation (4.18) can be rewritten (locally) in the following way:

∇XY = ∇̂XY + g(∇XY, ξ)ξ + g(∇XY,N)E

= ∇̂XY + {g(HX,Y ) + αg(ϕX, Y )}ξ + C(X,Y )E,(4.18)
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and the local expression of ĥ is defined as

ĥ(X,Y ) = {g(HX,Y ) + αg(ϕX, Y )}ξ + C(X,Y )E.

The tensor ĥ is not symmetric, in general. Using (4.18), then, the distribution

D̂ is integrable if and only if it is symmetric, i.e.,

g(HX,Y ) = −αg(ϕX, Y ) and C(X,Y ) = C(Y,X)

for any X,Y ∈ Γ(D̂). Therefore, we have the following.

Lemma 4.13. Let (M, g, S(TM)) be an invariant null hypersurface of an in-
definite nearly α-Sasakian manifold (M, g) with ξ ∈ TM . Then the distribution

D̂ defined in (4.16) is integrable if and only if

g(HX,Y ) = −αg(ϕX, Y ) and C(X,Y ) = C(Y,X)(4.19)

for any X,Y ∈ Γ(D̂).

On the other hand and in the case where the relation (4.13) is defined, (4.18)

can be rewritten as, for any X, Y ∈ Γ(D̂),

∇̃XY −B(X,Y )E = ∇∗
XY = ∇̂XY + ĥ(X,Y )− C(X,Y )E,

that is,

∇̃XY = ∇̂XY + {g(HX,Y ) + αg(ϕX, Y )}ξ +B(X,Y )E.

From the relation (4.19) and Lemma 4.2,

HX = −αϕX +
{
θ(HX) + αv(X)

}
E

for any X ∈ Γ(D̂) and using (4.14), we have

∇̃Xξ = 0.

Lemma 4.14. Let (M, g,N) be an invariant closed rigged null hypersurface of
an indefinite nearly α-Sasakian manifold (M, g) with ξ ∈ TM . Then, the line

bundle Rξ is a D̂-parallel.

Also, we have the following.

Theorem 4.15. Let (M, g,N) be an invariant closed rigged null hypersurface
of an indefinite nearly α-Sasakian manifold (M, g) with ξ ∈ TM . Let M ′ be

a leaf of an integrable distribution D̂. Then, on M ′, the (1, 1)-tensor field H
defined in (3.5) proportionally acts like the (1, 1) tensor field ϕ|M′ given in

(3.1), i.e.,

g(HX,HY ) = α2 g(X,Y )

for any X,Y ∈ Γ(D̂). Moreover,

g(HX,HY ) = α2 {g(X,Y )− η(X)η(Y )}
for any X,Y ∈ Γ(TM).
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The results above also hold when the screen distribution is conformal. The
latter means that the shape operators AN and A∗

E are related by [3]

AN = φA∗
E ,

where φ is a non-vanishing smooth function on U in M . In case U = M
the screen conformality is said to be global. Such a submanifold has some
important and desirable properties, for instance, the integrability of its screen
distribution.

As an example, we have Example 4.1 in which M is a screen conformal
invariant null hypersurface with φ = 1

2 .
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Fortuné Massamba

School of Mathematics, Statistics and Computer Science

University of KwaZulu-Natal
Private Bag X01, Scottsville 3209, South Africa

Email address: massfort@yahoo.fr, Massamba@ukzn.ac.za

https://doi.org/10.1142/S0219887817500451
https://doi.org/10.3906/mat-1810-107
https://doi.org/10.1007/s00009-019-1423-x

