FINSLER METRICS COMPATIBLE WITH A SPECIAL RIEMANNIAN STRUCTURE

HONG-SUH PARK, HA-YONG PARK* AND BYUNG-DOO KIM

ABSTRACT. We introduce the notion of the Finsler metrics compatible with a special Riemannian structure f of type (1,1) satisfying $f^6 + f^2 = 0$ and investigate the properties of Finsler space with them.

1. Introduction

A Finsler space F^n admitting a Finsler metric L(x,y) and an almost complex structure J satisfying the Rizza condition ([3], [10]) is called an almost Hermitian Finsler manifold or simply a Rizza manifold. The Rizza manifold has been studied by G. B. Rizza [10], Y. Ichijyō [4] and M. Fukui [1]. The f-structure in a Riemannian manifold was introduced and studied by K. Yano [11]. Recently, in [4], Y. Ichijyō introduced the Finsler metrics compatible with f-structure and they were studied by some authors ([4], [7], [8]). On the other hand, $\varphi(4,2)$ -structure in a Riemannian manifold was introduced and studied by K. Yano, C. S. Houh and B. Y. Chen [12], and the Finsler metrics compatible with a $\varphi(4,2)$ -structure were studied by the first two authors ([9]).

The present paper is the consecutive study of [9]. We investigate the Finsler metrics compatible with a special structure $f^i{}_j \neq 0$ in the Riemannian manifold of type (1,1) satisfying $f^i{}_r f^r{}_k f^k{}_h f^h{}_l f^l{}_t f^t{}_j + f^i{}_r f^r{}_j = 0$.

Received December 7, 1999. Revised April 2, 2000.

²⁰⁰⁰ Mathematics Subject Classification: 53E40.

Key words and phrases: f-structure, Complementary distribution, Complex Banach space, (f^2, L) -manifold, Berwald space, Douglas tensor.

^{*}This paper was supported by Kyungil University Research Grant in 1999.

2. Preliminaries

Let $f^{i}_{j} \ (\neq 0)$ be a tensor field of type (1,1) and class C^{∞} satisfying

$$(2.1) f^{i}_{r}f^{r}_{k}f^{k}_{h}f^{h}_{l}f^{l}_{t}f^{t}_{j} + f^{i}_{r}f^{r}_{j} = 0, rank (f^{i}_{r}) = 2r \le n.$$

If we put

(2.2)
$$\ell^{i}{}_{j} = -f^{i}{}_{r}f^{r}{}_{k}f^{k}{}_{h}f^{h}{}_{j}, \ m^{i}{}_{j} = f^{i}{}_{r}f^{r}{}_{k}f^{k}{}_{h}f^{h}{}_{j} + \delta^{i}{}_{i},$$

where δ_i^i is the Kronecker delta, we have

$$(2.3) \qquad \ell^{i}{}_{j} + m^{i}{}_{j} = \delta^{i}{}_{j}, \ \ell^{i}{}_{r}\ell^{r}{}_{j} = \ell^{i}{}_{j}, \ \ell^{i}{}_{r}m^{r}{}_{j} = m^{i}{}_{r}\ell^{r}{}_{j} = 0,$$

$$(2.3) \qquad m^{i}{}_{r}m^{r}{}_{j} = m^{i}{}_{j}, \ f^{k}{}_{j}f^{r}{}_{k}\ell^{i}{}_{r} = \ell^{k}{}_{j}f^{r}{}_{k}f^{i}{}_{r} = f^{r}{}_{j}f^{i}{}_{r},$$

$$f^{i}{}_{r}f^{r}{}_{k}m^{k}{}_{j} = m^{i}{}_{r}f^{r}{}_{k}f^{k}{}_{j} = 0, \ f^{i}{}_{r}f^{r}{}_{k}f^{k}{}_{h}f^{h}{}_{l}\ell^{l}{}_{j} = -\ell^{i}{}_{j}.$$

Hence, $\ell^i{}_j$ and $m^i{}_j$ are complementary projection operators on the tangent space $T_p(M)$ at each point p of M^n . Let $\mathcal L$ and $\mathcal M$ be the distributions corresponding to $\ell^i{}_j$ and $m^i{}_j$ respectively. $\mathcal L$ is a 2r-dimensional distribution and $\mathcal M$ is an (n-2r)-dimensional distribution. The tangent space $T_p(M)$ is expressed by $\mathcal L \oplus \mathcal M$. For any $y \in T_p(M)$, y = u + v for $u \in \mathcal L$ and $v \in \mathcal M$, that is, the local components of u and v are expressed as $u^i = l^i{}_j y^j$ and $v^i = m^i{}_j y^j$ for $y^i \in T_p(M)$. The tensor $f^i{}_r f^r{}_j$ acts on $\mathcal L$ as an almost complex structure operator and on $\mathcal M$ as a null operator. If rank of $f^i{}_j$ is n, then $l^i{}_j = \delta^i{}_j$ and $m^i{}_j = 0$, so $f^i{}_j$ satisfies $f^i{}_k f^k{}_h f^h{}_l f^l{}_j = -\delta^i{}_j$, that is, $f^i{}_k f^k{}_j$ is an almost complex structure. It is well known ([11]) that, in a manifold with the structure $f^i{}_j$ satisfying (2.1), there exists a positive definite Riemannian metric a_{ij} with respect to which the distributions $\mathcal L$ and $\mathcal M$ are orthogonal and

$$(2.4) a_{ij} = a_{pq} f^p{}_r f^r{}_i f^q{}_k f^k{}_j + a_{ip} m^p{}_j, \ a_{ip} f^p{}_r f^r{}_j = -a_{jp} f^p{}_r f^r{}_i.$$

In a Finsler space F^n , the metric tensor $g_{ij}(x,y)$ and C-tensor $C_{ijk}(x,y)$ are introduced by

$$g_{ij}(x,y) = (1/2)\dot{\partial}_i\dot{\partial}_j L^2(x,y), \ C_{ijk}(x,y) = (1/4)\dot{\partial}_i\dot{\partial}_j\dot{\partial}_k L^2(x,y),$$

where $\dot{\partial}_i = \partial/\partial y^i$.

3. (f^2, L) -manifold

Let $T_p(M)$ be a tangent space at any point p of a Finsler space F^n with the metric L(x,y). If we define the norm of $y \in T_p(M)$ as

$$||y|| = L(x, y),$$

then $T_p(M)$ becomes a normed linear space. Since $f^i{}_r f^r{}_j$ are almost complex structures on the subspace \mathcal{L} in $T_p(M)$, we define the scalar product of a complex number $\bar{c} = |\bar{c}|(\cos \theta + i \sin \theta)$ and any $\ell^i{}_r y^r$ on \mathcal{L} as follows:

$$\bar{c}\ell^{i}_{r}y^{r} = |\bar{c}|(\delta^{i}_{j}\cos\theta + f^{i}_{r}f^{r}_{j}\sin\theta)\ell^{j}_{k}y^{k}.$$

Then we have the following from the properties of Finsler metric L(x, y):

- (1) $\|\ell y\| = L(x, \ell y) \ge 0$,
- (2) $\|\ell y\| = L(x, \ell y) = 0$ if and only if y = 0,
- (3) $\|\ell y_1 + \ell y_2\| = L(x, \ell y_1 + \ell y_2) \le L(x, \ell y_1) + L(x, \ell y_2)$ = $\|\ell y_1\| + \|\ell y_2\|$,
- (4) since a finite normed space is complete, $\{\ell y \mid ||\ell y|| = L(x, \ell y)\}$ is complete.

Therefore, if $\|\bar{c}\ell y\| = |\bar{c}|\|\ell y\|$ for any complex number \bar{c} and $\ell y \in \mathcal{L}$, then \mathcal{L} is a complex Banach space. If we put the components of f_{θ} as $f_{\theta}{}^{i}{}_{j} = \delta^{i}{}_{j} \cos \theta + f^{i}{}_{r} f^{r}{}_{j} \sin \theta$, then

$$\|\bar{c}\ell y\| = L(x, \bar{c}\ell y) = |\bar{c}|L(x, f_{\theta}\ell y)$$

and hence $\|\bar{c}\ell y\| = |\bar{c}|\|\ell y\|$ is equivalent to

(3.2)
$$L(x, f_{\theta} \ell y) = L(x, \ell y).$$

In a Finsler space $F^n(M, L)$ with the norm defined by (3.1) and the Riemannian structure $f^i{}_j$ satisfying (2.1), if the Finsler metric L(x, y) satisfies (3.2), L is said to be *compatible with* $f^i{}_j$ and F^n is called an (f^2, L) -manifold.

Thus we have:

PROPOSITION 3.1. In an (f^2, L) -manifold, the distribution \mathcal{L} in the tangent space $T_p(M)$ of a Finsler space $F^n(M, L)$ is a complex Banach space.

From the definition of the metric tensor we have

(3.3)
$$\dot{\partial}_{i}\dot{\partial}_{j}L^{2}(x,\ell y) = 2g_{pq}(x,\ell y)\ell^{p}{}_{i}\ell^{q}{}_{j},$$

$$\dot{\partial}_{i}\dot{\partial}_{j}L^{2}(x,f_{\theta}\ell y) = 2g_{pq}(x,f_{\theta}\ell y)f_{\theta}{}^{p}{}_{k}f_{\theta}{}^{q}{}_{h}\ell^{k}{}_{i}\ell^{h}{}_{j},$$

where the components of $f_{\theta}\ell y$ are $(\delta_r^i \cos \theta + f_l^i f_r^l \sin \theta) \ell_k^r y^k$. From (3.2) and (3.3) we have

$$(3.4) g_{pq}(x, f_{\theta}\ell y) f_{\theta r}^p f_{\theta s}^q \ell^r{}_i \ell^s{}_j = g_{pq}(x, \ell y) \ell^p{}_i \ell^q{}_j.$$

Since L(x, y) is homogeneous of degree one in y, (3.4) leads to (3.2). That is, (3.2) is equivalent to (3.4).

Now, differentiating (3.4) with respect to θ and using

$$(f_{\theta}\ell y)_{\theta=0} = \ell y, \ (f_{\theta j}^i)_{\theta=0} = \delta_j^i, \ (df_{\theta j}^i/d\theta)_{\theta=0} = f_k^i f_j^k,$$

then we have

(3.5)
$$\frac{2C_{pqt}(x,\ell y)f_{n}^{t}f_{m}^{n}\ell_{d}^{m}y^{d}\ell_{i}^{p}\ell_{j}^{q} + g_{pq}(x,\ell y)f_{c}^{p}f_{r}^{c}\ell_{i}^{r}\ell_{j}^{q}}{+ g_{pq}(x,\ell y)f_{n}^{q}f_{n}^{s}\ell_{i}^{s}\ell_{i}^{p} = 0}.$$

On the other hand, we have

$$\begin{split} &\frac{d}{d\theta} \left\{ g_{pq}(x,f_{\theta}\ell y) f_{\theta r}^{p} f_{\theta s}^{q} \ell^{r}{}_{i} \ell^{s}{}_{j} \right\} \\ &= f_{\theta i}^{r} f_{\theta j}^{s} \{ 2 C_{pqt}(x,f_{\theta}\ell y) f_{n}^{t} f_{a}^{n} \ell^{a}{}_{e} f_{\theta m}^{l} y^{m} \ell^{p}{}_{r} \ell^{q}{}_{s} \\ &+ g_{pm}(x,f_{\theta}\ell y) f_{a}^{m} f_{a}^{q} \ell^{p}{}_{r} \ell^{q}{}_{s} + g_{mq}(x,f_{\theta}\ell y) f_{l}^{m} f_{r}^{l} \ell^{p}{}_{r} \ell^{q}{}_{s} \} = 0 \end{split}$$

by virtue of $f_{\theta r}^p \ell^r{}_i = \ell^p{}_r f_{\theta i}^r$ and (3.5). Therefore $g_{pq}(x, f_{\theta} \ell y) f_{\theta r}^p f_{\theta s}^q \ell^r{}_i \ell^s{}_j$ is independent of θ , so (3.4) holds. Thus (3.4) is equivalent to (3.5). Next, transvecting (3.5) by $y^i y^j$, we get

(3.6)
$$g_{pq}(x,\ell y) f^{p}_{k} f^{k}_{r} \ell^{r}_{i} \ell^{q}_{i} y^{i} y^{j} = 0.$$

Differentiating (3.6) with respect to y^h , we have

$$\begin{split} &2C_{pqr}(x,\ell y)\ell^{r}{}_{h}f^{p}{}_{k}f^{k}{}_{l}\ell^{l}{}_{i}\ell^{q}{}_{j}y^{i}y^{j}\\ &+g_{pq}(x,\ell y)f^{p}{}_{k}f^{k}{}_{l}\ell^{l}{}_{h}\ell^{q}{}_{i}y^{j}+g_{pq}(x,\ell y)f^{p}{}_{k}f^{k}{}_{l}\ell^{l}{}_{i}y^{i}\ell^{q}{}_{h}=0, \end{split}$$

from which

$$(3.7) \{g_{pq}(x,\ell y)f^{p}{}_{k}f^{k}{}_{l}\ell^{l}{}_{h}\ell^{q}{}_{j} + g_{pq}(x,\ell y)f^{p}{}_{k}f^{k}{}_{l}\ell^{l}{}_{j}\ell^{q}{}_{h}\}y^{j} = 0.$$

Conversely we assume that (3.7) holds. Differentiating (3.7) with respect to y^i , we easily get (3.5). Thus (3.5) is equivalent to (3.7).

Consequently we have:

THEOREM 3.1. The condition (3.2) is equivalent to one of the following assertions:

(1)
$$2C_{pqt}(x,\ell y)f^{t}{}_{n}f^{n}{}_{m}\ell^{m}{}_{d}y^{d}\ell^{p}{}_{i}\ell^{q}{}_{j} + g_{pq}(x,\ell y)f^{p}{}_{c}f^{c}{}_{r}\ell^{r}{}_{i}\ell^{q}{}_{j} + g_{pq}(x,\ell y)f^{q}{}_{n}f^{n}{}_{s}\ell^{s}{}_{j}\ell^{p}{}_{i} = 0.$$

(2)
$$g_{pq}(x, \ell y) f^p{}_k f^k{}_r \ell^r{}_i \ell^q{}_i y^i y^j = 0.$$

(3)
$$\{g_{pq}(x,\ell y)f^{p}_{k}f^{k}_{l}\ell^{l}_{h}\ell^{q}_{j} + g_{pq}(x,\ell y)f^{p}_{k}f^{k}_{l}\ell^{l}_{j}\ell^{q}_{h}\}y^{j} = 0.$$

Now, in an (f^2, L) -manifold, we assume that

(3.8)
$$g_{ij}(x, \ell y) = g_{pq}(x, \ell y) f^p{}_r f^r{}_i f^q{}_l f^l{}_j,$$

where $f_{j}^{i}(x)$ is a structure satisfying (2.1).

Differentiating (3.8) with respect to y^k , we get

(3.9)
$$C_{ijr}(x,\ell y)\ell^r{}_k = C_{pqr}(x,\ell y)f^p{}_lf^l{}_if^q{}_hf^h{}_j\ell^r{}_k.$$

Transvecting (3.9) by ℓ_s^j and using (2.3), we have

(3.10)
$$C_{ijr}(x,\ell y)\ell^{r}{}_{k}\ell^{j}{}_{s} = C_{pqr}(x,\ell y)f^{p}{}_{l}f^{l}{}_{i}f^{q}{}_{h}f^{h}{}_{s}\ell^{r}{}_{k}.$$

Since $C_{ijr}(x, \ell y)$ is symmetric in all indices, from (3.10) we get

(3.11)
$$C_{pqr}(x,\ell y)f^{p}{}_{l}f^{l}{}_{i}f^{q}{}_{h}f^{h}{}_{s}l^{r}{}_{k} = C_{pqr}(x,\ell y)f^{p}{}_{l}f^{l}{}_{i}f^{q}{}_{h}f^{h}{}_{k}\ell^{r}{}_{s}.$$

From (3.9) and (3.11), we obtain

(3.12)
$$C_{ijr}(x, \ell y)\ell^{r}_{k} = C_{pqr}(x, \ell y)f^{p}_{l}f^{l}_{i}f^{q}_{h}f^{h}_{k}\ell^{r}_{j}.$$

If we make use of (2.3), (3.12) leads to

(3.13)
$$C_{ijk}(x, \ell y) - C_{ijr}(x, \ell y) m^{r}_{k}$$

$$= C_{pqj}(x, \ell y) f^{p}_{l} f^{l}_{i} f^{q}_{h} f^{h}_{k} - C_{pqr}(x, \ell y) f^{p}_{l} f^{l}_{i} f^{q}_{h} f^{h}_{k} m^{r}_{j}.$$

Transvecting (3.13) by $f_m^i f_t^m f_s^i f_n^i f_s^k \ell_d^k$ and using (2.3), we get

$$C_{ijk}(x,\ell y)f^{i}{}_{m}f^{m}{}_{t}f^{j}{}_{n}f^{n}{}_{s}\ell^{k}{}_{d} = -C_{pqj}(x,\ell y)\ell^{p}{}_{t}f^{q}{}_{r}f^{r}{}_{d}f^{j}{}_{n}f^{n}{}_{s}.$$

Hence $C_{ijk}(x,\ell y)f^i{}_m f^m{}_t f^j{}_n f^n{}_s \ell^k{}_d = 0$ from (3.11). Therefore from (3.9) $C_{ijr}(x,\ell y)\ell^r{}_k = \dot{\partial}_k g_{ij}(x,\ell y) = 0$, that is, $g_{ij}(x,\ell y)$ is a Riemannian metric.

Thus we have:

THEOREM 3.2. If an (f^2, L) -manifold satisfies (3.8), then $g_{ij}(x, \ell y)$ is a Riemannian metric, that is, the distribution \mathcal{L} is a Riemannian space.

4. Vanishing h-covariant derivatives of the structure f^{i}_{j}

In the even dimensional Riemannian manifold M^n , the Nijenhuis tensor of an almost complex structure $J^i{}_i(x)$ is represented by

$$(4.1) N^{i}{}_{jk} = (\partial_{r}J^{i}{}_{j})J^{r}{}_{k} - (\partial_{r}J^{i}{}_{k})J^{r}{}_{j} + J^{i}{}_{r}(\partial_{j}J^{r}{}_{k} - \partial_{k}J^{r}{}_{j}),$$

where $\partial_k = \partial/\partial x^k$.

Now, in an (f^2, L) -manifold, let $F\Gamma = (\Gamma^i{}_{jk}, G^i{}_j, C^i{}_{jk})$ and ∇_k be the Cartan connection ([6]) and the h-covariant derivative with respect to $F\Gamma$ respectively. Therefore the h-covariant derivative of the structure tensor $f^i{}_j$ satisfying (2.1) with respect to $F\Gamma$ gives

(4.2)
$$\nabla_k f^i{}_j = \partial_k f^i{}_j + \Gamma^i{}_{rk} f^r{}_j - f^i{}_r \Gamma^r{}_{jk}.$$

From (2.3), $f^i{}_m f^m{}_j$ acts on $\mathcal L$ as an almost complex structure operator, which implies that $(f^i{}_k f^k{}_h f^h{}_r f^r{}_j)u^j = -\delta^i{}_j u^j$, where $u^i = \ell^i{}_j y^j$ for

any $y^i \in T_p(M)$. Hence the Nijenhuis tensor $N^i{}_{jk}(x, \ell y)$ on $\mathcal L$ is easily given by

$$(4.3) N^{i}{}_{jk}(x,\ell y) = \{ (\nabla_{k}f^{i}{}_{m})f^{m}{}_{j} - f^{i}{}_{m} \nabla_{k} f^{m}{}_{j} \} f^{r}{}_{a}f^{a}{}_{k}$$

$$- \{ (\nabla_{r}f^{i}{}_{m})f^{m}{}_{k} - f^{i}{}_{m} \nabla_{r} f^{m}{}_{k} \} f^{r}{}_{a}f^{a}{}_{j}$$

$$+ f^{i}{}_{a}f^{a}{}_{r} \{ (\nabla_{j}f^{r}{}_{m})f^{m}{}_{k} + f^{i}{}_{m} \nabla_{j} f^{m}{}_{k} \}$$

$$- (\nabla_{k}f^{r}{}_{m})f^{m}{}_{j} + f^{r}{}_{m} \nabla_{k} f^{m}{}_{j} \}$$

by virtue of (4.1), (4.2) and $\Gamma^{i}_{jk} = \Gamma^{i}_{kj}$. Hence we obtain:

THEOREM 4.1. In an (f^2, L) -manifold, the distribution \mathcal{L} is complex manifold if the h-covariant derivative of a structure $f^i{}_j$ satisfying (2.1) with respect to Cartan connection vanishes.

Let us represent ∇_k the *h*-covariant derivative with respect to the Berwald connection ([6]) $B\Gamma = (G^i{}_{jk}, G^i{}_{j}, 0)$. If $G^i{}_{jk}$ are functions of position alone, that is, $\partial_h G^i{}_{jk} = 0$ holds, then the Finsler space F^n is said to be a *Berwald space*.

Let us suppose the h-covariant derivative of a structure $f^{i}{}_{j}$ satisfying (2.1) with respect to the Cartan connection $F\Gamma$ vanishes, that is,

$$\nabla_k f^i{}_j = \partial_k f^i{}_j + \Gamma^i{}_{rk} f^r{}_j - f^i{}_r \Gamma^r{}_{jk} = 0.$$

From $\Gamma^i{}_{km}y^m = G^i{}_k$, we have

$$(4.4) y^m \partial_m f^i{}_i + G^i{}_m f^m{}_i - f^i{}_m G^m{}_i = 0.$$

Differentiating (4.4) partially with respect to y^k , we have

(4.5)
$$\bar{\nabla}_k f^i{}_j = \partial_k f^i{}_j + G^i{}_{rk} f^r{}_j - f^i{}_r G^r{}_{jk} = 0.$$

Next, let $H_h{}^i{}_{jk}$ be the h-curvature of $B\Gamma$. That is

$$(4.6) H_h{}^i{}_{jk} = \delta_k G^i{}_{hj} + \delta_j G^i{}_{hk} + G^i{}_{rk} G^r{}_{hj} - G^i{}_{rj} G^r{}_{hk},$$

where $\delta_k = \partial_k - G^r{}_k \dot{\partial}_r$.

Applying the Ricci identity of $B\Gamma$ to $f_h^i f_j^h$ ([6]), we have

$$(4.7) f^{r}_{i}f^{l}_{i}H_{r}^{h}_{jk} - f^{h}_{m}f^{m}_{r}H_{i}^{r}_{jk} = 0,$$

by virtue of (4.5) and $T^{r}_{jk} = G^{i}_{jk} - G^{i}_{kj} = 0$.

On the other hand, if an *n*-dimensional Finsler space F^n $(n \geq 3)$ satisfies $H_i{}^h{}_{jk} = K(g_{ij}\delta^h_k - g_{ik}\delta^h_j)$, then F^n is called a Finsler space of constant curvature ([6]). In this case, (4.7) can be written as

(4.8)
$$K\{f_{l}^{r}f_{i}^{l}(g_{rj}\delta_{k}^{h}-g_{rk}\delta_{j}^{h})-f_{m}^{h}f_{r}^{m}(g_{ij}\delta_{k}^{r}-g_{ik}\delta_{j}^{r})\}=0.$$

Contracting (4.8) with respect to h and j and using (2.4), we have

$$K\{(1-n)g_{rk}f^{r}{}_{l}f^{l}{}_{i}-g_{ri}f^{r}lf^{l}{}_{k}\}=0.$$

We assume that $g_{ri}f^{r}_{l}f^{l}_{j}$ is symmetric in indices i and j. Then we have $Kg_{rk}f^{r}_{l}f^{l}_{i} = 0$. If $g_{rk}f^{r}_{l}f^{l}_{i} = 0$, then $f^{r}_{l}f^{l}_{i} = 0$. This is a contradiction. Therefore K = 0. Thus we have:

THEOREM 4.2. Let $F^n(n \geq 3)$ be an (f^2, L) -manifold with constant curvature. If the h-covariant derivative of a structure $f^i{}_j$ satisfying (2.1) with respect to Cartan connection vanishes and $g_{ri}f^r{}_lf^l{}_j$ is symmetric in indices i and j, then h-curvature tensor of Berwald connection vanishes.

We put $G_i{}^h{}_{jk} = \dot{\partial}_i G^h{}_{jk}$ and $G_{ij} = G_i{}^r{}_{jr}$. It is noted that $G_i{}^h{}_{jk}$ and G_{ij} are symmetric in indices i, j, k and i, j respectively.

By Euler's theorem on homogeneous function in y, we have

$$(4.9) (1) G^h_{i0} = G^h_{0i} = G^h_i, (2) G_{i0} = G_{0i} = 0,$$

where the index 0 denotes the contraction with the element of support y. From (2) of (4.9), we have

$$(4.10) \qquad (\dot{\partial}_r G_{jm}) y^m = -G_{jr}.$$

On the other hand, the Douglas tensor $D_i{}^h{}_{jk}$ ([5]) is given by

$$D_i{}^h{}_{jk} = G_i{}^h{}_{jk} - \frac{1}{n+1} (y^h \dot{\partial}_k G_{ij} + \delta^h_i G_{jk} + \delta^h_j G_{ki} + \delta^h_k G_{ij}).$$

In a Finsler space F^n , if $D_i{}^h{}_{jk} = 0$ and $\nabla_k f^i{}_j = 0$, from (4.5) we have

$$(4.11) \qquad (\partial_k f^i{}_l) f^l{}_i + f^i{}_l \partial_k f^l{}_i + G^i{}_{mk} f^m{}_l f^l{}_i - f^i{}_l f^l{}_m G^m{}_{ik} = 0,$$

(4.12)
$$G_i{}^h{}_{jk} = \frac{1}{n+1} (y^h \dot{\partial}_k G_{ij} + \delta_i^h G_{jk} + \delta_j^h G_{ki} + \delta_k^h G_{ij}).$$

Differentiating (4.11) partially with respect to y^h , we find

$$G_m{}^i{}_{kh}f^m{}_lf^l{}_j = f^i{}_lf^l{}_mG_j{}^m{}_{kh}.$$

Thus we have

$$f^{i}{}_{l}f^{l}{}_{m}(y^{m}\dot{\partial}_{h}G_{jk} + \delta^{m}{}_{j}G_{kh} + \delta^{m}{}_{k}G_{hj} + \delta^{m}{}_{h}G_{jk})$$

$$= (y^{i}\dot{\partial}_{h}G_{mk} + \delta^{i}{}_{m}G_{kh} + \delta^{i}{}_{k}G_{hm} + \delta^{i}{}_{h}G_{mk})f^{m}{}_{l}f^{l}{}_{j}.$$

Contracting this with respect to i and h, we have

(4.13)
$$f^{r}{}_{l}f^{l}{}_{m}y^{m}\dot{\partial}_{r}G_{jk} + f^{r}{}_{l}f^{l}{}_{k}G_{rj} = nG_{mk}f^{m}{}_{l}f^{l}{}_{j}.$$

Transvecting (4.13) by y^j , we find, from (2) of (4.9) and (4.10)

$$-f^r{}_lf^l{}_my^mG_{rk} = nG_{mk}f^m{}_lf^l{}_iy^j,$$

that is, $f^r{}_l f^l{}_m y^m G_{rk} = 0$. Differentiating this with respect to y^j , we find

$$f^r{}_l f^l{}_i G_{rk} + f^r{}_l f^l{}_m y^m \dot{\partial}_r G_{ik} = 0$$

by virtue of $\dot{\partial}_k G_{rj} = \dot{\partial}_r G_{jk}$. Therefore (4.13) leads to $G_{mk} f^m{}_l f^l{}_j = 0$. Since $f^m{}_l f^l{}_j$ is an almost complex structure on \mathcal{L} , $G_{ij} = 0$ on \mathcal{L} . Thus we obtain $G_i{}^h{}_{jk} = 0$ on \mathcal{L} from (4.12). Consequently we have

THEOREM 4.3. If a Finsler manifold F^n with the vanishing h-covariant derivative of a structure $f^i{}_j$ satisfying (2.1) with respect to Cartan connection has a vanishing Douglas tensor, then the distribution $\mathcal L$ is a Berwald space.

References

- [1] M. Fukui, Complex Finsler manifolds, J. Math. Kyoto Univ. 29 (1989), 609-624.
- [2] Y. Ichijyō, Almost Hermitian Finsler manifolds, Tensor, N. S. 37 (1982), 279-284.
- [3] _____, Finsler metrics on almost complex manifolds, Riv, Mat. Univ. Parma, 14 (1988), 1-28.
- [4] _____, On Finsler metrics compatible with f-structures, Proceedings of the 30th symposium on Finsler Geometry (Nagasaki), Japan (1995), 18-20.
- [5] M. Matsumoto, Projective changes of Finsler metrics and projectively flat Finsler spaces, Tensor 34 (1980), 306-315.
- [6] _____, Foundations of Finsler geometry and special Finsler spaces, Kaiseisha press, Ōtsu, Japan, 1986.
- [7] H. S. Park, On nearly Kaehlerian Finsler manifolds, Tensor, N. S. (1993), 243-248.
- [8] H. S. Park and I. Y. Lee, On the Finsler spaces with f-structure, Bull. Korean Math. Soc. 36 (1999), 217-224.
- [9] H. S. Park and H. Y. Park, On Finsler metrics compatible with $\varphi(4,2)$ -structure, Tensor, N. S. **58** (1997), 67-70.
- [10] G. B. Rizza, Strutture di Finsler di tipo quasi Hermitiano, Riv. Mat. Univ. Parma 4 (1963), 83-106.
- [11] K. Yano, On a structure defined by a tensor field f of type (1,1) satisfying $f^3 + f = 0$, Tensor, N. S. 14 (1963), 99-109.
- [12] K. Yano, C. S. Houh and B. Y. Chen, Structures defined by a tensor field φ of type (1,1) satisfying $\varphi^4 \pm \varphi^2 = 0$, Tensor, N. S. 23 (1972), 81-87.

Hong-Suh Park
Department of Mathematics
Yeungnam University
Gyongsan 712-749, Korea
E-mail: hspark@ynuco.yeungnam.ac.kr

Ha-Yong Park and Byung-Doo Kim
Department of Mathematics
Kyungil University
Gyongsan 712-701, Korea
E-mail: hypark@bear.kyungil.ac.kr
bdkim@bear.kyungil.ac.kr