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FINSLER METRICS COMPATIBLE WITH
A SPECIAL RIEMANNIAN STRUCTURE

HoNG-SuH PARK, HA-YONG PARK* AND Byung-Doo Kim

ABSTRACT. We introduce the notion of the Finsler metrics compat-
ible with a special Riemannian structure f of type (1,1) satisfying
F8+ 2 = 0 and investigate the properties of Finsler space with them.

1. Introduction

A Finsler space F™ admitting a Finsler metric L(z,y) and an almost
complex structure J satisfying the Rizza condition ([3], [10]) is called
an almost Hermitian Finsler manifold or simply a Rizza manifold. The
Rizza manifold has been studied by G. B. Rizza [10], Y. Ichijyo [4] and
M. Fukui [1]. The f-structure in a Riemannian manifold was introduced
and studied by K. Yano [11]. Recently, in [4], Y. Ichijyo introduced
the Finsler metrics compatible with f-structure and they were studied
by some authors ([4], [7], [8]). On the other hand, (4, 2)-structure in
a Riemannian manifold was introduced and studied by K. Yano, C. S.
Houh and B. Y. Chen [12], and the Finsler metrics compatible with a
(4, 2)-structure were studied by the first two authors ([9]).

The present paper is the consecutive study of [9]. We investigate
the Finsler metrics compatible with a special structure f¢; (# 0) in
the Riemannian manifold of type (1,1) satisfying f*, 74 f*5 fH fle £ +
! irf ";=0.
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2. Preliminaries

Let f*; (# 0) be a tensor field of type (1,1) and class C® satisfying
(2.1) Forf ko nfrftefty + £ f7; =0, rank (fir) = 2r < n.
If we put
(2.2) C5= o fTof*n sy, miy = frof e fonfh; + 6,
where 6; is the Kronecker delta, we have

Ci+mby =8, 007 =05, m"; =mid"; =0,
(23) mzrmrj =mzj, fkjfrkeir — ekjfrkfir — flrjfir,
FrofTemb; =mi fif*i =0, fifreffn il = .

Hence, ¢ j and mt ;j are complementary projection operators on the tan-
gent space T,,(M) at each point p of M™. Let £ and M be the distribu-
tions corresponding to éij and m® j respectively. £ is a 2r-dimensional
distribution and M is an (n — 2r)-dimensional distribution. The tangent
space T,,(M) is expressed by L& M. For any y € T,(M), y = u+v
for u € £ and v € M, that is, the local components of © and v are ex-
pressed as u’ = I*;y7 and v = m?;3y for y* € T,(M). The tensor fi,f;
acts on £ as an almost complex structure operator and on M as a null
operator. If rank of f*; is n, then I*; = §*; and m*; = 0, so f*; satisfies
fikfkhfhlf‘j = —6¢, that is, fikfkj is an almost complex structure. It
is well known ([11]) that, in a manifold with the structure f*; satisfying
(2.1), there exists a positive definite Riemannian metric a;; with respect
to which the distributions £ and M are orthogonal and

(24)  aij = apg fPr fTif I f55 + aiymPy, aipfPrf"; = —ajpfPrfTs.

In a Finsler space F", the metric tensor g;;(z,y) and C-tensor C;;x(x,y)
are introduced by

9i5(z,y) = (1/2)8:0;L*(x,y), Cijr(z,y) = (1/4)8:0,0,L%(x,y),

where 8; = 8/8y".
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3. (f?, L)-manifold

Let T,(M) be a tangent space at any point p of a Finsler space F™
with the metric L(z,y). If we define the norm of y € T,(M) as

(3.1) lyll = L(=, y),

then T,(M) becomes a normed linear space. Since firf"; are almost
complex structures on the subspace £ in T,(M), we define the scalar
product of a complex number ¢ = |¢|(cosf + isinf) and any £.y" on L
as follows:

o' ry” = [2](6} cos O + f*r 7 sin0)¢ky”.

Then we have the following from the properties of Finsler metric L(z,y):
(1) eyl = L(=, by) > 0,
(2) |4yl = L(=z,€y) = 0 if and only if y =0,
(3) lly1 + £ya|l = Lz, by1 + Ly2) < L(x, £y1) + L(z, Ly2)
= ||2y1 || + [[4y2]|,
(4) since a finite normed space is complete, {¢y | |¢y|| = L(z, £y)} is
complete.

Therefore, if ||cy| = |&|||€y|| for any complex number ¢ and ¢y € L,
then L is a complex Banach space. If we put the components of fy as
fo's = 05 cosf + firfT;sin6, then

llictyll = Lz, cty) = |e|L(x, foly)
and hence ||efy]| = |¢|||4y|| is equivalent to
(3.2) L(z, foly) = L(z, Ly).
In a Finsler space F™(M,L) with the norm defined by (3.1) and the
Riemannian structure f%; satisfying (2.1), if the Finsler metric L(z,y)
satisfies (3.2), L is said to be compatible with ft; and F™ is called an

(f2, L)-manifold.
Thus we have:
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PROPOSITION 3.1. In an (f%, L)-manifold, the distribution L in the
tangent space T,(M) of a Finsler space F*(M, L) is a complex Banach
space.

From the definition of the metric tensor we have
(3.3) 0:0; L% (2, by) = 2gpq (z, £y)EPst%;,
' 0:0;L*(z, foly) = 2pq(z, foly) foP foTnt" L%},

where the components of foly are (8:cosf + fif', sin6)¢,y*. From
(3.2) and (3.3) we have

(34) 9pa(T, Foly) 5, f3:07il° = gpq(z, Ly)ePitd;.
Since L(x,y) is homogeneous of degree one in y, (3.4) leads to (3.2).

That is, (3.2) is equivalent to (3.4).
Now, differentiating (3.4) with respect to 6 and using

(foly)o=o = Ly, (f4;)0=0 = &}, (dfs;/dB)e=0 = fkf*;,
then we have

2Cpqt (.’L‘, ey)ftn.fnmemdydgpigqj + Gpgq (IL‘, ey)fpcfcrerigqj

3.5)
( + gp‘l(‘ra gy)fqnfnsgsjgpi =0.

On the other hand, we have

d T S

a0 {gpq(“’v ff?éy)fgr gsé £ j}

= fgz‘fgj{2cpqt(xa f@zy)ftnfnagaefémymgpreqs

+ ng(m) fegy)fmafaqureqs + gmq(w, ff)fy)fmlflpepreqs} =0

by virtue of f§ £"; = P, f5; and (3.5). Therefore gpq(z, foly) fh. fa.07:0%;
is independent of 6, so (3.4) holds. Thus (3.4) is equivalent to (3.5).
Next, transvecting (3.5) by y*y’, we get

(36) gPQ(x7 ey)fpk:fk'reriéqjyiyj =0.




Finsler metrics compatible with a special Riemannian structure 343

Differentiating (3.6) with respect to y", we have
2Cpqr (2, Y)" 1 fPuf* 18 050"y
+ gpe(<, ey)fpkfklelheqjyj + gpq($>£y)fpkfkl€liyieqh =0,
from which
(3.7) {gpq(z, ) fPe 518175 + gpo(a, Ey)fpkfkleljeqh}yj = 0.

Conversely we assume that (3.7) holds. Differentiating (3.7) with respect
to y*, we easily get (3.5). Thus (3.5) is equivalent to (3.7).
Consequently we have:

THEOREM 3.1. The condition (3.2) is equivalent to one of the follow-
ing assertions:

(1) 2Cpqt(z, &y) frnf " ml™ ay 0Pl + gpg(, £y) [P frl 3%,
+ 9pq(x, Ly) fIn [ :£° £°; = 0.

(2) gpq(-”’afy)fpkfkrfrieqjyiyj =(.

(3)  {9pq(@, £y) fPrf* 18 009, + gpg (e, 8y) fPu 18 0%}y = 0.

Now, in an (f2, L)-manifold, we assume that
(3-8) 935 (%, £y) = gpg (T, £y I fTiF U5,

where f%;(z) is a structure satisfying (2.1).
Differentiating (3.8) with respect to y*, we get

(3.9) Cijr (@, y) " = Coqr(@, &) fP1F i f 0 f" 5 k-
Transvecting (3.9) by £, and using (2.3}, we have

(3.10) Cijr(@, y) k8 = Copqr(z, 89) fP1f i f S " sl
Since C;jr(z, fy) is symmetric in all indices, from (3.10) we get

(3.11)  Coqr(@, ) FPLL i f ISk = Cpgr(@, £y) fP1f i fIRF 1l .
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From (3.9) and (3.11), we obtain
(3.12) Cijr(@, 8y)€ & = Cpgr(m, £y) fP1f i fInS 1l 5.
If we make use of (2.3), (3.12) leads to
Cijr(z, ly) — Cijr(z, Ly)m’
=Cpqi (@, 09) fPf i f T f ke — Cpgr(@-Ly) fP1f s fOn SR em™ ;.
Transvecting (3.13) by fimf™:f7nf"s£€*4 and using (2.3), we get
Cige (2, ) f mf ™t f nf" 5" a = ~Cpgs (2, ()P e S0 fTaf " n ™.

Hence Cijk(x,Ey)f"mfmtfjnf"slkd = 0 from (3.11). Therefore from
(3.9) Cijr(x, Ly)€x = Orgi;(x, Ly) = 0, that is, g;;(z, £y) is 2 Riemannian
metric.

Thus we have:

THEOREM 3.2. If an (f?, L)-manifold satisfies (3.8), then g;;(x, fy) is
a Riemannian metric, that is, the distribution £ is a Riemannian space.

(3.13)

4. Vanishing h-covariant derivatives of the structure f?;

In the even dimensional Riemannian manifold M™, the Nijenhuis ten-
sor of an almost complex structure J*;(x) is represented by

(4.1) N¥jg = (8,J% ) — (8, J'%) T + J*(0; Tk — 8k 75),

where 0, = 8/0z".

Now, in an (f%, L)-manifold, let FI' = (I;x,G%;,C%y) and vy be
the Cartan connection ([6]) and the h-covariant derivative with respect
to FT respectively. Therefore the h-covariant derivative of the structure
tensor f; satisfying (2.1) with respect to FT' gives

(4.2) Vil =0k f 5 + Tk fT5 = Firl7 jie.

From (2.3), f%.f™; acts on L as an almost complex structure operator,
which implies that (fixf*nfPf7;)u? = —6%;u?, where u* = €*;y7 for
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any y* € T,(M). Hence the Nijenhuis tensor N%;x(z,fy) on L is easily
given by

N (@, by) = {(Vaf'm)f™5 = fim Ve F75 1 f%
—{(VrLom) ™k = fom e FR Y0
+ fiafar{(ijTm)fmk + fim Vi fMe}
~ (VST ) ™5+ m Ve f75}

(4.3)

by virtue of (4.1), (4.2) and I'*j; = I'";. Hence we obtain:

THEOREM 4.1. In an (f2, L)-manifold, the distribuj;ion L is complex
manifold if the h-covariant derivative of a structure f*; satisfying (2.1)
with respect to Cartan connection vanishes.

Let us represent \/x the h-covariant derivative with respect to the
Berwald connection ([6]) BI' = (G%;i, G;,0). If G*j are functions of
position alone, that is, 3hGijk = 0 holds, then the Finsler space F™ is
sald to be a Berwald space.

Let us suppose the h-covariant derivative of a structure f*; satisfying
(2.1) with respect to the Cartan connection FT' vanishes, that is,

Vil = Oufiy + T — 5T 1, = 0.
From I'j,,y™ = G, we have
(4.4) Y Om S+ G f™ = [fmG™ 5 = 0.
Differentiating (4.4) partially with respect to y*, we have
(4.5) Vel =0kf'j + G fTj — f'rG 1 = 0.
Next, let H hijk be the h-curvature of BI'. That is
(4.6) Hp'jk = 06G'hj + 8;G ' hic + G'rkG hj — GG bk

where 8 = 8 — G106,
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Applying the Ricci identity of BT to fixf"; ([6]), we have
(4.7) FftiH " e — o f™ e Hi e = 0,

by virtue of (4.5) and T jx = G*jx — G'i; = 0.

On the other hand, if an n-dimensional Finsler space F™ (n > 3)
satisfies Hihjk = K(gijéfc1 - gik(s;?), then F™ is called a Finsler space of
constant curvature ([6]). In this case, (4.7) can be written as

48)  K{fTif'i(gri0k — 9r183) — fMmf ™ r(9:30% — 9uxd3)} = 0.
Contracting (4.8) with respect to h and j and using (2.4), we have

K{(l - n)grkfrlfli - grifrlflk} =0.

We assume that g,; f7 f ; is symmetric in indices ¢ and j. Then we have
KgrofT1ft = 0. If g f71f% = 0, then f7; f1; = 0. This is a contradiction.
Therefore K = 0. Thus we have:

THEOREM 4.2. Let F™(n > 3) be an (f?, L)-manifold with constant
curvature. If the h-covariant derivative of a structure f*; satisfying (2.1)
with respect to Cartan connection vanishes and g,; f"1 f t 4 is symmetric in
indices i and j, then h-curvature tensor of Berwald connection vanishes.

We put G;"jx = 3;G";i, and Gyj = Gy j,. It is noted that G;";; and
G;; are symmetric in indices %, j, k and 4, j respectively.
By Euler’s theorem on homogeneous function in y, we have

(4.9) (1) Ghio = GhOi = Ghi, (2) GiO = GOi = O,

where the index 0 denotes the contraction with the element of support
y. From (2) of (4.9), we have

(4.10) (37-Gjm)'ym = —Gjr.

On the other hand, the Douglas tensor D;" ;% ([5]) is given by

1 .
D" ix =GPy — m(yhakcij + 867Gk + 0 Grs + 63Gig)-
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In a Finsler space F™, if D;";; = 0 and Vi fi; = 0, from (4.5) we
have

(4.11) Oef )5+ faok 'y + G f™if — Fuf'mG™ ke =0,

1 .
(4.12) Gifik = m(y"akGij + 000Gy + 61 G + 61 Gyy).

Differentiating (4.11) partially with respect to y", we find
G’k f™1f 5 = ff G k-
Thus we have

Fif my™0nGjk + 67 Grn + O Gy + 67 Gk

Contracting this with respect to i and h, we have

(4.13) frlflmymérij + frif'iGri = NGk f™1f';.

Transvecting (4.13) by y?, we find, from (2) of (4.9) and (4.10)
— 1 ™ Gk = nGr f™ifL597,

that is, f7f'my™Gre = 0. Differentiating this with respect to 37, we
find )
FfiGre + fTif' my™0,Gjp = 0

by virtue of c’}kGTj = 5rij. Therefore (4.13) leads to Gmkfmlflj = 0.
Since f™; f! ;j 1s an almost complex structure on £, G;; = 0 on L. Thus
we obtain Gr,:hjk = 0 on L from (4.12). Consequently we have

THEOREM 4.3. Ifa Finsler manifold F™ with the vanishing h-covariant
derivative of a structure f* ; satisfying (2.1) with respect to Cartan con-
nection has a vanishing Douglas tensor, then the distribution L is a
Berwald space.
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