• Title/Summary/Keyword: Distribution Journal

Search Result 56,965, Processing Time 0.061 seconds

Design of flow path with 2 inlet and outlets to improve cell performance and prevent cell degradation in Solid Oxide Fuel Cell (SOFC 셀 성능 향상 및 수명 저하 방지를 위한 입구와 출구 2개의 유로 설계)

  • Kim, Dongwoo;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.2
    • /
    • pp.56-62
    • /
    • 2021
  • Solid oxide fuel cells (SOFCs) is the high efficiency fuel cell operating at high temperatures ranging from 700-1000℃. Design of the flow paths of the fuel and air in SOFCs is important to improve cell performance and prevent cell degradation. However, the uneven distribution of current density in the traditional type having one inlet and outlet causes cell degradation. In this regard, the parallel flow path with two inlet and outlets was designed and compared to the traditional type based on computational fluid dynamics (CFD) simulation. To check the cell performance, hydrogen distribution, velocity distribution and current density distribution were monitored. The results validated that the parallel designs with two inlets and outlets have a higher cell performance compared to the traditional design with one inlet and outlet due to a larger reaction area. In case of uniform-type paths, more uniform current density distribution was observed with less cross-sectional variation in flow paths. In case of contracted and expanded inflow paths, significant improvement of performance and uniform current density was not observed compared to uniform parallel path. Considering SOFC cell with uniform current density can prevent cell degradation, more suitable design of SOFC cell with less cross-sectional variation in the flow path should be developed. This work can be helpful to understand the role of flow distribution in the SOFC performance.

Predicting the potential distribution of the subalpine broad-leaved tree species, Betula ermanii Cham. under climate change in South Korea

  • Shin, Sookyung;Dang, Ji-Hee;Kim, Jung-Hyun;Han, Jeong Eun
    • Journal of Species Research
    • /
    • v.10 no.3
    • /
    • pp.246-254
    • /
    • 2021
  • Subalpine and alpine ecosystems are especially vulnerable to temperature increases. Betula ermanii Cham. (Betulaceae) is a dominant broad-leaved tree species in the subalpine zone and is designated as a 'Climate-sensitive Biological Indicator Species' in South Korea. This study aimed to predict the potential distribution of B. ermanii under current and future climate conditions in South Korea using the MaxEnt model. The species distribution models showed an excellent fit (AUC=0.99). Among the climatic variables, the most critical factors shaping B. ermanii distribution were identified as the maximum temperature of warmest month (Bio5; 64.8%) and annual mean temperature (Bio1; 20.3%). Current potential habitats were predicted in the Baekdudaegan mountain range and Mt. Hallasan, and the area of suitable habitat was 1531.52 km2, covering 1.57% of the Korean Peninsula. With global warming, future climate scenarios have predicted a decrease in the suitable habitats for B. ermanii. Under RCP8.5-2070s, in particular, habitat with high potential was predicted only in several small areas in Gangwon-do, and the total area suitable for the species decreased by up to 97.3% compared to the current range. We conclude that the dominant factor affecting the distribution of B. ermanii is temperature and that future temperature rises will increase the vulnerability of this species.

Blockchain-based Sales and Purchase Record Management Systems for Agricultural Products (블록체인을 활용한 농산물 판매 및 소비이력 시스템에 관한 연구)

  • Na, Wonshik
    • Journal of Industrial Convergence
    • /
    • v.20 no.3
    • /
    • pp.41-46
    • /
    • 2022
  • This paper proposes a consumer-tailored solution to prevent the forgery and falsification of data by incorporating blockchain technology in the online and offline distribution of agricultural produce. The solution provides customized services to consumers based on an analysis of the data generated from the sales, distribution, and consumption of quality of the produce. It can also ensure the safety and credibility of the produce, and allow producers to identify consumption intent and the flow of distribution. Producers will be able to determine the flow of produce based on the data collected and thus tailor promotional efforts. This is expected to be the fourth industrial revolution in the agricultural produce distribution sector. Utilizing blockchain and big data technology to create integrated record management systems that combine multiple solutions will shape future technology trends. In addition, if eco-friendly certification is acknowledged as a valuable service and can be incorporated into the distribution process, this solution could become a one-stop distribution solution for agricultural produce.

Development of Return flow rate Prediction Algorithm with Data Variation based on LSTM (LSTM기반의 자료 변동성을 고려한 하천수 회귀수량 예측 알고리즘 개발연구)

  • Lee, Seung Yeon;Yoo, Hyung Ju;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.2
    • /
    • pp.45-56
    • /
    • 2022
  • The countermeasure for the shortage of water during dry season and drought period has not been considered with return flowrate in detail. In this study, the outflow of STP was predicted through a data-based machine learning model, LSTM. As the first step, outflow, inflow, precipitation and water elevation were utilized as input data, and the distribution of variance was additionally considered to improve the accuracy of the prediction. When considering the variability of the outflow data, the residual between the observed value and the distribution was assumed to be in the form of a complex trigonometric function and presented in the form of the optimal distribution of the outflow along with the theoretical probability distribution. It was apparently found that the degree of error was reduced when compared to the case not considering where the variance distribution. Therefore, it is expected that the outflow prediction model constructed in this study can be used as basic data for establishing an efficient river management system as more accurate prediction is possible.

Change in the Characteristics of Particle Separation and Particle Size Distribution of Weathered Granite Soil from the Yecheon Area (Eastern South Korea) after Water Washing (물 세척한 예천지역 화강풍화토의 입자분리와 입도분포 변화 특성)

  • Kim, Suk-Joo
    • The Journal of Engineering Geology
    • /
    • v.32 no.2
    • /
    • pp.241-255
    • /
    • 2022
  • In this study, sieve analysis testing was performed on weathered granite soil from Yecheon (eastern South Korea) before and after water washing in accordance with the sieve analysis regulations of KS F 2302. The changes in particle separation and particle size distribution after washing with water were analyzed. Image analysis using an optical microscope revealed that soil particles were separated into smaller particles by water washing. The change in the particle size distribution curve was assessed using five index values. The increase in the fine particle fraction (<0.075 mm) was 13.67%, the increase in the 0.075-0.25 mm fraction was 19.44%, and the mean particle diameter (D50) decreased by 0.663 mm. In addition, the maximum passage width (BM) of the particle size distribution curve increased by 21.08% for the #30 sieve, and the moving area (A) of the particle size distribution curve was 69.28%·mm. These results suggest that washing with water is an effective way to prevent underestimation of the fine particle content in soil.

Development of a quantification method for modelling the energy budget of water distribution system (상수관망 에너지 모의를 위한 정량화 분석기법 개발)

  • Choi, Doo Yong;Kim, Sanghyun;Kim, Kyoung-Pilc
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1223-1234
    • /
    • 2022
  • Efforts for reducing greenhouse gas emission coping with climate change have also been performed in the field of water and wastewater works. In particular, the technical development for reducing energy has been applied in operating water distribution system. The reduction of energy in water distribution system can be achieved by reducing structural loss induced by topographic variation and operational loss induced by leakage and friction. However, both analytical and numerical approaches for analyzing energy budget of water distribution system has been challengeable because energy components are affected by the complex interaction of affecting factors. This research drew mathematical equations for 5 types of state (hypothetical, ideal, leak-included ideal, leak-excluded real, and real), which depend on the assumptions of topographic variation, leakage, and friction. Furthermore, the derived equations are schematically illustrated and applied into simple water network. The suggested method makes water utilities quantify, classify, and evaluate the energy of water distribution system.

The Characteristics of Stress Distribution on Two-arch Tunnel's Pillar due to Surface Loads in the Discontinuous Rock Mass (불연속성 암반에 위치한 2-아치 터널에서 지표면 하중 작용시 필러에 전달되는 응력 특성)

  • Kim, Hong-Moon;Lee, Sang-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.65-73
    • /
    • 2009
  • Large scale model tests and numerical analyses are performed to investigate the stress distribution of pillar due to surface loading nearby two-arch tunnel which is constructed in the regularly jointed rocks. It is observed that the influence of discontinuities on the stress distribution in the discontinuous rock mass and the underground stresses induced by surface loading are greater than those of linear elastic theory. Especially, lines of equal stresses are developed to the direction of inclination according to the inclined grade. In cases of discontinuities imbedded in parallel with or vertical to the ground, the pressure bulbs are formed symmetrically, however, the inclined ones result in stress distribution in parallel with and vertical to the planes of discontinuities. Results indicated that stress distribution is seriously affected by the angle of discontinuity. When stresses propagating to the pillar need to be estimated, relative location of surface loading, grade of discontinuous plane, and location of two-arch tunnel should be carefully considered.

Reliability-Based Design of Shallow Foundations Considering The Probability Distribution Types of Random Variables (확률변수의 분포특성을 고려한 얕은기초 신뢰성 설계)

  • Kim, Chang-Dong;Kim, Soo-Il;Lee, Jun-Hwan;Kim, Byung-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.119-130
    • /
    • 2008
  • Uncertainties in physical and engineering parameters for the design of shallow foundations arise from various aspects such as inherent variability and measurement error. This paper aims at investigating and reducing uncertainty from deterministic method by using the reliability-based design of shallow foundations accounting for the variation of various design parameters. A probability distribution type and statistics of random variables such as unit weight, cohesion, infernal friction angle and Young's modulus in geotechnical engineering are suggested to calculate the ultimate bearing capacities and immediate settlements of foundations. Reliability index and probability of failure are estimated based on the distribution types of random variables. Widths of foundation are calculated at target reliability index and probability of failure. It is found that application and analysis of the best-fit distribution type for each random variables are more effective than adoption of the normal distribution type in optimizing the reliability-based design of shallow foundations.

Influence of Estimation Method of Compression Index on Spatial Distribution of Consolidation Settlement (압축지수의 추정방법이 압밀침하량의 공간적 분포특성에 미치는 영향)

  • Kim, Dong-Hee;Ryu, Dong-Woo;Kim, Min-Tae;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.10
    • /
    • pp.39-47
    • /
    • 2010
  • In order to investigate the effect of variation characteristics of compression index on the spatial distribution of consolidation settlement, this study presents the estimation methods of the distribution of consolidation settlement and compares the estimated settlements. When the variation of compression index is considerable, the ordinary cokriging is more reliable in estimating the compression index than ordinary kriging because smoothing effect of ordinary cokriging is smaller than that of ordinary kriging. The spatial distribution of consolidation settlement estimated by considering both the variation of compression index and void ratio (CASE-1) is different from that estimated by using the mean value of all soil properties (CASE-2). The settlement of CASE-1 shows the larger variation at short distances rather than that of CASE-2. Whereas the spatial settlement distribution of CASE-1 is affected by the spatial distributions of compression index as well as the thickness of consolidation layer, that of CASE-2 is significantly influenced by the distribution of consolidation layer thickness.

Estimation of maximum object size satisfying mean response time constraint in web service environment (웹 서비스 환경에서 평균 응답 시간의 제약조건을 만족하는 최대 객체 크기의 추정)

  • Yong-Jin Lee
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.3
    • /
    • pp.1-6
    • /
    • 2023
  • One of the economical ways to satisfy the quality of service desired by the user in a web service environment is to adjust the size of the object. To this end, this study finds the maximum size of objects that satisfy this constraint when the mean response time is given below an arbitrary threshold for quality of service. It can be inferred that in the steady state of system, the mean response time in the deterministic model by using the round-robin will be the same as that of the queueing model following the general distribution. Based on this, analytical formulas and procedures for finding the maximum object size are obtained. As a service distribution of web traffic, the Pareto distribution is appropriate, so the maximum object size is computed by applying the M/G(Pareto)/1 model and the M/G/1/PS model using exponential distribution as computational experience. Performance evaluation through numerical calculation shows that as the shape parameter in the Pareto distribution increases, the M/G(Pareto)/1 model and M/G/1/PS model have the same maximum object size. The results of this study can be used to environments where objects can be sized for economical web service control.