DOI QR코드

DOI QR Code

Predicting the potential distribution of the subalpine broad-leaved tree species, Betula ermanii Cham. under climate change in South Korea

  • Shin, Sookyung (Department of Biological Resources Utilization, National Institute of Biological Resources) ;
  • Dang, Ji-Hee (Department of Biological Resources Utilization, National Institute of Biological Resources) ;
  • Kim, Jung-Hyun (Department of Biological Resources Research, National Institute of Biological Resources) ;
  • Han, Jeong Eun (Department of Biological Resources Utilization, National Institute of Biological Resources)
  • 투고 : 2021.06.14
  • 심사 : 2021.07.15
  • 발행 : 2021.08.31

초록

Subalpine and alpine ecosystems are especially vulnerable to temperature increases. Betula ermanii Cham. (Betulaceae) is a dominant broad-leaved tree species in the subalpine zone and is designated as a 'Climate-sensitive Biological Indicator Species' in South Korea. This study aimed to predict the potential distribution of B. ermanii under current and future climate conditions in South Korea using the MaxEnt model. The species distribution models showed an excellent fit (AUC=0.99). Among the climatic variables, the most critical factors shaping B. ermanii distribution were identified as the maximum temperature of warmest month (Bio5; 64.8%) and annual mean temperature (Bio1; 20.3%). Current potential habitats were predicted in the Baekdudaegan mountain range and Mt. Hallasan, and the area of suitable habitat was 1531.52 km2, covering 1.57% of the Korean Peninsula. With global warming, future climate scenarios have predicted a decrease in the suitable habitats for B. ermanii. Under RCP8.5-2070s, in particular, habitat with high potential was predicted only in several small areas in Gangwon-do, and the total area suitable for the species decreased by up to 97.3% compared to the current range. We conclude that the dominant factor affecting the distribution of B. ermanii is temperature and that future temperature rises will increase the vulnerability of this species.

키워드

과제정보

This work was supported by a grant from the National Institute of Biological Resources(NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBR202129101).

참고문헌

  1. Adhikari, P., M.S. Shin, J.Y. Jeon, H.W. Kim, S. Hong and C. Seo. 2018. Potential impact of climate change on the species richness of subalpine plant species in the mountain national parks of South Korea. Journal of Ecology and Environment 42:36. https://doi.org/10.1186/s41610-018-0095-y
  2. Bobrowski, M., L. Gerlitz and U. Schickhoff. 2017. Modelling the potential distribution of Betula utilis in the Himalaya. Global Ecology and Conservation 11:69-83. https://doi.org/10.1016/j.gecco.2017.04.003
  3. Booth, T.H. 2018. Species distribution modelling tools and databases to assist managing forests under climate change. Forest Ecology and Management 430(15):196-203. https://doi.org/10.1016/j.foreco.2018.08.019
  4. Cahill, A.E., M.E. Aiello-Lammens, M.C. Fisher-Reid, X. Hua, C.J. Karanewsky, H.Y. Ryu, G.C. Sbeglia, F. Spagnolo, J.B. Waldron, O. Warsi and J.J. Wiens. 2013. How does climate change cause extinction? Proceedings of the Royal Society of Botany 280:2121890.
  5. Cahill, A.E., M.E. Aiello-Lammens, M.C. Fisher-Reid, X. Hua, C.J. Karanewsky, H.Y. Ryu, G.C. Sbeglia, F. Spagnolo, J.B. Waldron, O. Warsi and J.J. Wiens. 2014. Causes of warm-edge range limits: systematic review, proximate factors and implications for climate change. Journal of Biogeography 41:429-442. https://doi.org/10.1111/jbi.12231
  6. Chen, I.C., J.K. Hill, R. Ohlemuller, D.B. Roy and C.D. Thomas. 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333:1024-1026. https://doi.org/10.1126/science.1206432
  7. Choi, J.Y. and S.H. Lee. 2018. Climate change impact assessment of Abies nephrolepis (Trautv.) Maxim. in subalpine ecosystem using ensemble habitat suitability modeling. Journal of Korean Environmental Restoration Technology 21(1):103-118.
  8. Conlisk, E., C. Castanha, M.J. Germino, T.T. Veblen, J.M. Smith and L.M. Kueppers. 2017. Declines in low-elevation subalpine tree populations outpace growth in high-elevation populations with warming. Journal of Ecology 105(5):1347-1357. https://doi.org/10.1111/1365-2745.12750
  9. Cook, J.A. and J. Ranstam. 2016. Overfitting. British Journal of Surgery 103(13):1814. https://doi.org/10.1002/bjs.10244
  10. Dawson, T.P., S.T. Jackson, J.I. House, I.C. Prentice and G.M. Mace. 2011. Beyond predictions: Biodiversity conservation in a changing climate. Science 332:53. https://doi.org/10.1126/science.1200303
  11. Elith, J., C.H. Graham, R.P. Anderson, M. Dudik, S. Ferrier, A. Guisan, R.J. Hijmans, F. Huettmann, J.R. Leathwick, A. Lehmann, J. Li, L.G. Lohmann, B.A. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J.M. Overton, A.T. Peterson, S.J. Phillips, K. Richardson, R. Scachetti-Pereira, R.E. Schapire, J. Soberon, S. Williams, M.S. Wisz and N.E. Zimmermann. 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29:129-151. https://doi.org/10.1111/j.2006.0906-7590.04596.x
  12. Elith, J., S.J. Phillips, T. Hastie, M. Dudik, Y.E. Chee and C.J. Yates. 2011. A statistical explanation of MAXENT for ecologist. Diversity and Distributions 17:43-57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
  13. Fick, S.E. and R.J. Hijmans. 2017. WorldClim 2: new 1 km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37(12):4302-4315. https://doi.org/10.1002/joc.5086
  14. Fourcade, Y., J.O. Engler, D. Rodder and J. Secondi. 2014. Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS ONE 9(5):e97122. https://doi.org/10.1371/journal.pone.0097122
  15. Franklin, J. 2013. Species distribution models in conservation biogeography: developments and challenges. Diversity and Distributions 19(10):1217-1223. https://doi.org/10.1111/ddi.12125
  16. Gansert, D. 2002. Betula ermanii, a dominant subalpine and subarctic treeline tree species in Japan: Ecological traits of deciduous tree life in winter. Arctic. Antarctic, and Alpine Research 34 (1):57-64. https://doi.org/10.2307/1552509
  17. Gessler, A., C. Keitel, J. Kreuzwieser, R. Matyssek, W. Seiler and H. Rennenberg. 2007. Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees 21:1-11. https://doi.org/10.1007/s00468-006-0107-x
  18. Kong, W., G. Kim, S. Lee, H. Park, H. Kim and D. Kim. 2017. Vegetation and Landscape Characteristics at the Peaks of Mts. Seorak, Jiri and Halla. Journal of Climate Change Research 8(4):401-414. https://doi.org/10.15531/ksccr.2017.8.4.401
  19. Koo, K.A., W.S. Kong, S.U. Park, J.H. Lee, J. Kim and H. Jung. 2017. Sensitivity of Korean fir (Abies koreana Wils.), a threatened climate relict species, to increasing temperature at an island subalpine area. Ecological Modeling 353:5-16. https://doi.org/10.1016/j.ecolmodel.2017.01.018
  20. Korea National Arboretum. 2017. Forest of Korea (IV) Ecology of yezo spruce (Picea yezoensis) of South Korea. Sumeunkil, Seoul.
  21. Korea National Park Research Institute. 2019. Ecosystem monitoring in Korea National Park under climate change (2019). Korea National Park Research Institute, Wonju.
  22. Leach, K., W.I. Montgomery and N. Reid. 2017. Modelling the influence of biotic factors on species distribution patterns. Ecological Modelling 337:96-106. https://doi.org/10.1016/j.ecolmodel.2016.06.008
  23. Loarie, S.R., P.B. Duffy, H. Hamilton, G.P. Asner, C.B. Field and D.D. Ackerly. 2009. The velocity of climate change. Nature 462:1052-1055. https://doi.org/10.1038/nature08649
  24. Lobo, J.M., A. Jimenez-Valverde and R. Real. 2008. AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography 17(2):145-151. https://doi.org/10.1111/j.1466-8238.2007.00358.x
  25. Mountain Research Initiative EDW Working Group. 2015. Elevation-dependent warming in mountain regions of the world. Nature Climate Change 5:424-430. https://doi.org/10.1038/nclimate2563
  26. National Institute of Biological Resources. 2010. List of the climate-sensitive biological indicator species [Available from: https://species.nibr.go.kr/home/mainHome.do?cont_link=011&subMenu=011017&contCd=011017, accessed 25 June 2020].
  27. National Institute of Meteorological Sciences. 2019. Global climate change forecast report. National Institute of Meteorological Sciences, Jeju-do.
  28. Park, C.Y., Y.E. Choi, Y.A. Kwon, J.I. Kwon and H.S. Lee. 2017. Studies on changes and future projections of subtropical climate zones and extreme temperature events over South Korea using high resolution climate change scenario based on PRIDE model. Journal of Korean Regional Geographers 19(4):600-614.
  29. Park, H.C., J.H. Lee and G.G. Lee. 2014. Predicting the suitable habitat of the Pinus pumila under climate change. Journal of Environmental Impact Assessment 23(5):379-392. https://doi.org/10.14249/eia.2014.23.5.379
  30. Park, H.C. 2016. Development and application of climate change sensitivity assessment method for plants using the species distribution models-Focused on 44 plants among the climate-sensitive biological indicator speciesPh.D. Dissertation. Kangwon National University, Chuncheon, Korea.
  31. Parmesan, C. and G. Yohe. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37-41. https://doi.org/10.1038/nature01286
  32. Pearson, R.G. and T.P. Dawson. 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography 12:361-371. https://doi.org/10.1046/j.1466-822X.2003.00042.x
  33. Phillips, S.J., R.P. Anderson and R.E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modeling 190:231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  34. Phillips, S.J., R.P. Anderson, M. Dudik, R.E. Schapire and M.E. Blair. 2017. Opening the black box: an open-source release of Maxent. Ecography 40(7):887-893. https://doi.org/10.1111/ecog.03049
  35. Richman, S.K., J.J. Levine, L. Stefan and C.A. Johnson. 2020. Asynchronous range shifts drive alpine plant-pollinator interactions and reduce plant fitness. Global Change Biology 26(5):3052-3064. https://doi.org/10.1111/gcb.15041
  36. Shaw, K., S. Roy and B. Wilson. 2014. Betula ermanii. The IUCN Red List of Threatened Species 2014: e.T1944 52A2336921 [Available from: https://dx.doi.org/10.2305/IUCN.UK.2014-3.RLTS.T194452A2336921.en, accessed 25 March 2020].
  37. Shin, S., J.H. Kim, J.H. Dang, I.S. Seo and B.Y. Lee. 2021. Elevational distribution ranges of vascular plant species in the Baekdudaegan mountain range, South Korea. Journal of Ecology and Environment 45:7. https://doi.org/10.1186/s41610-021-00182-1
  38. Sinclair, S.J., M.D. White and G.R. Newell. 2010. How Useful Are Species Distribution Models for Managing Biodiversity under Future Climates? Ecology and Society 15 (1):8.
  39. Villero, D., M. Pla, D. Camps, J. Ruiz-Olmo and L. Brotons. 2017. Integrating species distribution modelling into decision-making to inform conservation actions. Biodiversity and Conservation 26:251-271. https://doi.org/10.1007/s10531-016-1243-2
  40. Vuuren, D.P.V., J. Edmonds, M. Kainuma, K. Riahi, A. Thomson, K. Hibbard, G.C. Hurtt, T. Kram, V. Krey and J.F. Lamarque. 2011. The representative concentration pathways: An overview. Climate Change 109:5-31. https://doi.org/10.1007/s10584-011-0148-z
  41. Walther, G.R., E. Post, P. Convey, A. Menzel, C. Parmesank, T.J.C. Beebee, J.M. Fromentin, O. Hoegh-Guldberg and F. Bairlein. 2002. Ecological responses to recent climate change. Nature 416:389-395. https://doi.org/10.1038/416389a
  42. Wiens, J.J. 2016. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biology 14 (12):e2001104.
  43. Worrall, J.J., G.E. Rehfeldt, A. Hamann, E.H. Hogg, S.B. Marchetti, M. Michaelian and L.K. Gray. 2013. Recent declines of Populus tremuloides in North America linked to climate. Forest Ecology and Management 299:35-51. https://doi.org/10.1016/j.foreco.2012.12.033