Acknowledgement
본 연구는 환경부의 재원으로 한국환경산업기술원의 물관리연구사업(127572)에 의해 수행되었습니다.
References
- Arun, S. S. and Iyer, G. N. (2020). On the Analysis of COVID19-novel Corona Viral Disease Pandemic Spread Data Using Machine Learning Techniques. In 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS). IEEE. pp.1222-1227.
- Gumbel, E. J. (1935). Les Valeurs Extremes Des Distributions Statis-tiques. Annales l'institut Henri Poincar'e. 5(2): 115-158.
- Hochreiter, S. and Schmidhuber, J. (1997). Long Short-term Memory. Neural Computation. 9(8): 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
- Hyndman, R. J. and Athanasopoulos, G. (2018). Forecasting: Principles and Practice. OTexts.
- Jang, O. J. and Moon, Y. I. (2022). Predicting the Amount of Water Shortage during Dry Seasons Using Deep Neural Network with Data from RCP Scenarios. Journal of Korea Water Resources Association. 55(2): 121-133. https://doi.org/10.3741/JKWRA.2022.55.2.121
- Jung, S. H., Lee, D. E., and Lee, K. S. (2018). Prediction of River Water Level Using Deep-learning Open Library. Journal of the Korean Society of Hazard Mitigation. 18(1): 1-11. https://doi.org/10.9798/KOSHAM.2018.18.1.1
- Kim, D., Park, J., and Choi, J. (2014). A Comparative Study Between Stock Price Prediction Models Using Sentiment Analysis and Machine Learning Based on SNS and News Articles. Journal of Information Technology Services. 13(3): 221-233. https://doi.org/10.9716/KITS.2014.13.3.221
- Kim, J. H., Kim, K. T., and Han, J. K. (2015). Big Data Analysis based on Deep Learning for Baseball Game Data. Journal of Korea Institute of Communication Sciences. 2015(11): 262-265.
- Kim, J., Kang, M. S., and Kim, S. H. (2019). Comparing the Performance of Artificial Neural Networks and Long Short-Term Memory Networks for Rainfall-runoff Analysis. In Proceedings of the Korea Water Resources Association Conference. Korea Water Resources Association. pp.320-320.
- Kim, Y. and Kim, Y. M. (2021). Predicting Game Results using Machine Learning and Deriving Strategic Direction from Variable Importance. Journal of Korea Game Society. 21(4): 3-12. https://doi.org/10.7583/JKGS.2021.21.4.3
- Korea Meteorological Administration (KMA) (2021). Korea Climate Change Assessment Report 2021. Seoul: KMA.
- Lee, S. Y., Yoo, H. J., and Lee, S. O. (2021). Role of Unstructured Data on Water Surface Elevation Prediction with LSTM: Case Study on Jamsu Bridge, Korea. Journal of Korea Water Resources Association. 54(spc1): 1195-1204. https://doi.org/10.3741/JKWRA.2021.54.S-1.1195
- Lee, W. (2017). A Deep Learning Analysis of the KOSPI's Directions. Journal of the Korean Data and Information Science Society. 28(2): 287-295. https://doi.org/10.7465/jkdi.2017.28.2.287
- Ministry of Land Infrastructure and Transport (MOLIT) (2016). National Water Resources Plan (2011~2020) (3rd revision). Sejong: MOLIT.
- Oh, J. H., Ryu, K. S., Bok, J. S., Jang, Y. S., Bae, Y. D., and Lee, B. G. (2019). Water Supply-and-Demand Analysis Considering the Actual Water-Use System in the East Basin of Han River. Journal of the Korean Society of Hazard Mitigation. 19(7): 529-543. https://doi.org/10.9798/kosham.2019.19.7.529
- Ruxton, G. D. (2006). The Unequal Variance T-Test is an Underused Alternative to Student's T-Test and the Mann-Whitney U Test. Behavioral Ecology. 17(4): 688-690. https://doi.org/10.1093/beheco/ark016
- Seo, Y. J., Moon, H. W., and Woo, Y. T. (2019). A Win/Lose Prediction Model of Korean Professional Baseball Using Machine Learning Technique. Journal of the Korea Society of Computer and Information. 24(2): 17-24. https://doi.org/10.9708/JKSCI.2019.24.02.017
- Song, Y. J., Lee, J. W., and Lee, J. W. (2017). A Design and Implementation of Deep Learning Model for Stock Prediction Using Tensorflow. KIISE Transactions on Computing Practices. 23(11): 799-801.
- Tran, Q. T., Hao, L., and Trinh, Q. K. (2016). A Novel Procedure to Model and Forecast Mobile Communication Traffic by ARIMA/GARCH Combination Models. In 2016 International Conference on Modeling. Simulation and Optimization Technologies and Applications (MSOTA2016). Atlantis Press.
- Weibull, W. (1951). A Statistical Distribution Function of wide Applicability. Journal of Applied Mechanics.
- Yoo, H. J., Lee, S. O., Choi, S. H., and Park, M. H. (2020). Development of a Data-Driven Model for Forecasting Outflow to Establish a Reasonable River Water Management System. Journal of Korean Society of Disaster and Security. 13(4): 75-92. https://doi.org/10.21729/KSDS.2020.13.4.75
- Yoo, H., Lee, S. O., Choi, S., and Park, M. (2019). A Study on the Data Driven Neural Network Model for the Prediction of Time Series Data: Application of Water Surface Elevation Forecasting in Hangang River Bridge. Journal of Korean Society of Disaster and Security. 12(2): 73-82. https://doi.org/10.21729/KSDS.2019.12.2.73
- Zhang, D., Martinez, N., Lindholm, G., and Ratnaweera, H. (2018). Manage Sewer In-line Storage Control Using Hydraulic Model and Recurrent Neural Network. Water Resources Management. 32(6): 2079-2098. https://doi.org/10.1007/s11269-018-1919-3