• Title/Summary/Keyword: Distribution Department

Search Result 23,857, Processing Time 0.045 seconds

TAIL ASYMPTOTICS FOR THE QUEUE SIZE DISTRIBUTION IN AN MX/G/1 RETRIAL QUEUE

  • KIM, JEONGSIM
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.3_4
    • /
    • pp.343-350
    • /
    • 2015
  • We consider an MX/G/1 retrial queue, where the batch size and service time distributions have finite exponential moments. We show that the tail of the queue size distribution is asymptotically given by a geometric function multiplied by a power function. Our result generalizes the result of Kim et al. (2007) to the MX/G/1 retrial queue.

THE AVERAGING VALUE OF A SAMPLING OF THE RIEMANN ZETA FUNCTION ON THE CRITICAL LINE USING POISSON DISTRIBUTION

  • Jo, Sihun
    • East Asian mathematical journal
    • /
    • v.34 no.3
    • /
    • pp.287-293
    • /
    • 2018
  • We investigate the averaging value of a random sampling ${\zeta}(1/2+iX_t)$ of the Riemann zeta function on the critical line. Our result is that if $X_t$ is an increasing random sampling with Poisson distribution, then $${\mathbb{E}}{\zeta}(1/2+iX_t)=O({\sqrt{\;log\;t}}$$, for all sufficiently large t in ${\mathbb{R}}$.

ON SOME CHRACTERIZATIONS OF THE WEIBULL DISTRIBUTION

  • Chang, Se-Kyung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.25-30
    • /
    • 2009
  • In this paper, we establish some characterizations which is satisfied by the independence of the upper record values from the Weibull distribution. One characterization of several results is that $X{\in}W$ EI(1, $\alpha$), $\alpha>0$, if and only if $\frac{X_{U(m)}}{X_{U(n)}}$ and $X_{U(n)}$, $1{\leq}m are independent.

  • PDF

AN APPROXIMATION FOR THE QUEUE LENGTH DISTRIBUTION IN A MULTI-SERVER RETRIAL QUEUE

  • Kim, Jeongsim
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.95-102
    • /
    • 2016
  • Multi-server queueing systems with retrials are widely used to model problems in a call center. We present an explicit formula for an approximation of the queue length distribution in a multi-server retrial queue, by using the Lerch transcendent. Accuracy of our approximation is shown in the numerical examples.

Optimal M-level Constant Stress Design with K-stress Variables for Weibull Distribution

  • Moon, Gyoung-Ae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.4
    • /
    • pp.935-943
    • /
    • 2004
  • Most of the accelerated life tests deal with tests that use only one accelerating variable and no other explanatory variables. Frequently, however, there is a test to use more than one accelerating or other experimental variables, such as, for examples, a test of capacitors at higher than usual conditions of temperature and voltage, a test of circuit boards at higher than usual conditions of temperature, humidity and voltage. A accelerated life test is extended to M-level stress accelerated life test with k-stress variables. The optimal design for Weibull distribution is studied with k-stress variables.

  • PDF

Estimation for Exponential Distribution Based on Multiply Type-II Censored Samples

  • Kang, Suk-Bok
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2004.04a
    • /
    • pp.203-210
    • /
    • 2004
  • When the available sample is multiply Type-II censored, the maximum likelihood estimators of the location and the scale parameters of two- parameter exponential distribution do not admit explicitly. In this case, we propose some estimators which are linear functions of the order statistics and also propose some estimators by approximating the likelihood equations appropriately. We compare the proposed estimators by the mean squared errors.

  • PDF

Noninformative priors for the scale parameter in the generalized Pareto distribution

  • Kang, Sang Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1521-1529
    • /
    • 2013
  • In this paper, we develop noninformative priors for the generalized Pareto distribution when the scale parameter is of interest. We developed the rst order and the second order matching priors. We revealed that the second order matching prior does not exist. It turns out that the reference prior and Jeffrey's prior do not satisfy a first order matching criterion, and Jeffreys' prior, the reference prior and the matching prior are different. Some simulation study is performed and a real example is given.

MULTIVARIATE JOINT NORMAL LIKELIHOOD DISTANCE

  • Kim, Myung-Geun
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1429-1433
    • /
    • 2009
  • The likelihood distance for the joint distribution of two multivariate normal distributions with common covariance matrix is explicitly derived. It is useful for identifying outliers which do not follow the joint multivariate normal distribution with common covariance matrix. The likelihood distance derived here is a good ground for the use of a generalized Wilks statistic in influence analysis of two multivariate normal data.

  • PDF

ANALYSIS OF THE BEHAVIOR OF LIMITING SPECTRAL DENSITY FUNCTION OF LARGE DIMENSIONAL RANDOM MATRICES

  • Choi, Sang-Il
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.483-488
    • /
    • 2004
  • Results on the analytic behavior of the limiting spectral distribution of large dimensional random matrices, studied in Marcenko and Pastur [2], are derived. Using the Stieltjes transform, it is shown that the limiting distribution has a continuous derivative away from zero, the derivative being analytic whenever it is positive [3]. In the present paper, it is derived that the behavior of it resembles the behavior of a square root function near the boundary of its support.

A Note on Possibilistic Correlation

  • Hong, Dug-Hun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.1
    • /
    • pp.1-3
    • /
    • 2009
  • Recently, Carlsson, Full\acute{e}$r and Majlender [1] presented the concept of possibilitic correlation representing an average degree of interaction between marginal distribution of a joint possibility distribution as compared to their respective dispersions. They also formulated the weak and strong forms of the possibilistic Cauchy-Schwarz inequality. In this paper, we define a new probability measure. Then the weak and strong forms of the Cauchy-Schwarz inequality are immediate consequence of probabilistic Cauchy-Schwarz inequality with respect to the new probability measure.