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TAIL ASYMPTOTICS FOR THE QUEUE SIZE DISTRIBUTION
IN AN M¥/G/1 RETRIAL QUEUE!

JEONGSIM KIM

ABSTRACT. We consider an M X /G/1 retrial queue, where the batch size
and service time distributions have finite exponential moments. We show
that the tail of the queue size distribution is asymptotically given by a
geometric function multiplied by a power function. Our result generalizes
the result of Kim et al. (2007) to the MX /G/1 retrial queue.
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1. Introduction

Retrial queues are queueing systems in which arriving customers who find
all servers occupied may retry for service again after a random amount of time.
Retrial queues have been widely used to model many problems/situations in
telephone systems, call centers, telecommunication networks, computer networks
and computer systems, and in daily life. For an overview regarding retrial queues,
refer to the surveys [7, 12, 16]. For further details, refer to the books [4, 8] and
the bibliographies [1, 2, 3].

The single server batch arrival retrial queues are characterized by the following
features: If the server is idle when a batch of customers arrive from outside the
system, then one customer of that batch begins to be served immediately while
the other customers join a retrial group, called an orbit. If the server is busy when
a batch of customers arrive from outside the system, then all the customers of
that batch join the orbit. All the customers in the orbit behave independently of
each other. If the server is idle when a customer from the orbit attempts service,
this customer receives service immediately. Otherwise the customer comes back
to the orbit immediately and repeats the retrial process. Thus only the external
arrivals take place in batches and the retrials are conducted singly.
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We consider the M* /G/1 retrial queue where customers arrive from outside
the system in batches according to a Poisson process with rate A. The batch
sizes are independent and identically distributed (i.i.d.) random variables with a
generic random variable B and common distribution P(B = k) = by, k = 1,2,.. ..
Let b(z) = > 7, bxz" be the probability generating function (pgf) of the batch
size distribution. The service times are i.i.d. random variables with a generic
random variable S. Let B3(s) = E[e~*] be the Laplace-Stieltjes transform of
the service time distribution. The inter-retrial time, i.e., the length of the time
interval between two consecutive attempts made by a customer in the orbit,
is exponentially distributed with mean v~!'. The arrival process, the batch
sizes, the service times, and the inter-retrial times are assumed to be mutually
independent. The offered load p is defined as p = AE[B]E[S]. It is assumed that
p < 1 for stability of the system.

The M¥X /G/1 retrial queue has been studied by several authors. Falin [5]
obtained the pgf of the joint distribution of the server state and the number
of customers in the orbit (queue size). For a detailed analysis of the M* /G/1
retrial queue, we refer to the book of Falin and Templeton [8, pp. 173-186]. The
M¥X/G/1 retrial queue with multiclass of customers was studied by Kulkarni
[11], Falin [6] and Grishechkin [9].

We are interested in the tail asymptotics of the queue size distribution. Shang
et al. [13] studied the heavy-tailed asymptotics for the queue size distribution
in the M/G/1 retrial queue. Specifically, Shang et al. [13] showed that the
stationary distribution of the queue size in the M/G/1 retrial queue is subex-
ponential if the stationary distribution of the queue size in the corresponding
standard M/G/1 queue is subexponential. As a corollary of this property, they
proved that the stationary distribution of the queue size has a regularly varying
tail if the service time distribution has a regularly varying tail. Yamamuro [15]
extended the result of Shang et al. [13] to the M X /G/1 retrial queue, when the
batch size distribution has a finite exponential moment.

The main contribution of this paper is to find the light-tailed asymptotics for
the queue size distribution in the MX /G/1 retrial queue, when the service time
and batch size distributions have finite exponential moments, i.e.,

vs = sup{t € R : E[e!¥] < 0o} > 0, (1)
vp = sup{t € R: E[¢'P] < 00} > 0. (2)
If (1) and (2) hold, then it can be shown that
v =sup{z > 0: (A= Ab(2)) < o0} > 1.

In order to obtain the light-tailed asymptotics, we assume that there is a real
number o satisfying

BA=Ab(o)) =0, 1 <o <" (3)
We will show that if (3) holds, then

P(C=0,N=n)~con® to™" asn — oo, (4)
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P(C=1,N=n)~cin%" " asn— oo, (5)
for positive constants a,cy and ¢y, where N is the number of customers in the
orbit at steady state and C' is 0 if the server is idle at steady state and 1 other-
wise. The constants a, ¢y and ¢; are given explicitly. The results (4) and (5) are
obtained by investigating the pgfs for C and N through decomposing a compo-
nent of the pgfs as a sum of the principal part and the analytic part. Our result
generalizes the result of Kim et al. [10] to the MX /G/1 retrial queue.

The paper is organized as follows. In Section 2, we study the pgfs for the
server state and the number of customers in the orbit. In Section 3, we prove
(4) and (5). In Section 4, numerical results are presented to illustrate our results.

2. Probability generating function of the queue size distribution

Consider the M*X /G/1 retrial queue at steady state. Recall that N is the
number of customers in the orbit and C' is 0 if the server is idle and 0 otherwise.
We suppose that (3) holds. We define the pgfs po(z) and p1(z) as follows:

= ZIP’(C:O,N:n)z"
n=0

z) = ZIP’(C: 1,N =n)z"
n=0

It is well known (see Falin [5], Theorem 3.1 in Falin and Templeton [8]) that the
pefs po(2) and pq(z ) are given by

po() = (1 - p)ex ﬁA ibk$)%<m@,M<a, ()
piz) = (1 mMAimM v (2 [ e i), | <o

(7)

where I;(z) = b(j), and W at z =1 is interpreted as

i L= BO=0G) _p
im =
M- NG - T1-p

To investigate the light-tailed behavior of the queue size distribution, we
need to have a close look at singularities of W()( ) and W
on {z € C: |z| < v*}. Lemma 2.1, below, locates the zeros of S(A — Ab(2)) — z,
|z| < o. The proof is very similar to Lemma 1 of Kim et al. [10] and so we will
omit it.

Lemma 2.1. The analytic function B(A — Ab(z)) — z, |z| < ~*, has simple zeros
at 1 and o. Furthermore, it has no other zeros on {z € C: |z| < o}.

The following lemma decomposes W()( ) and é(_/\ﬁ_(AT_éggz_); as sums

of the principal parts at z = o and the analytic parts.
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Lemma 2.2. There are § € (0,v* — o) and analytic functions Z1(z) and Ea(2)
on{z€C:|z| <o+ d} such that

— B = b(2)) -
B0 —N(z) — = )
1 (o — 1)b(o) L
=TT o)) —1a—o T <otz Fe (8)
— B(A = \b(2))
30— N0)
oc—1 1

= — Za(2), < d, . 9

O N o) —1z o T2l <ota zFe(9)
Proof. Since the proofs of (8) and (9) are very similar, we only prove (8). We
note that Wg(z) has a removable singularity at z = 1 and is regarded

as analytic at z = 1. By Lemma 1, there is § > 0 such that W()( )

is analytic on {z € C : |z| < 0 + 0,z # o}. We observe that Wb( )

has a simple pole at z = ¢ and the residue of %{ng)zb( )at z = o is
(c=1)b(0)
_%7)\ﬁ’()\7)\b(0'))b’(o')71' Therefore,

— B —Ab(2))+ 1 (0 —1)b(o) 1
B0 =) — 2T ST Mo o) — 12—

has a removable singularity at z = 0. Let

1—-B(A—=Xb(2)) o—1)b(o
{ Wb( )+ 3 AB()E /\b(a())b’(a) 125 2 <o +d,z#0,

1—B(A—=Xb(u 1 o—1)b(o 1 _
limy, o (7B(A_(Ab(u)§_)ib(u) + =2 (o—1)b(o) —) , 2 =o0.

o =AB' (A=Xb(0))b (0)—1 u—0c

Then =;(z) is an analytic function on {z € C: |z| < 0 4 ¢} and satisfies (8). O

3. Tail asymptotics for the queue size distribution

In this section we prove the main result of this paper which provides the tail
asymptotics of the queue size distribution in the MX /G/1 retrial queue when
condition (3) holds.

Theorem 3.1. If (3) holds, then

P(C =0,N=n)~con® o™ asn — oo, (10)
P(C=1,N=n)~cin" " asn— oo, (11)
where
A (o0 —1)b(o

ov —AB'(\ = \b(o))V (o) —

[oa

)
=1t () e { <3;; i i) + )z},
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Ao’

and T'(+) denotes the gamma function.

Cc1 =

Proof. First we prove (10). Substituting (8) into (6) yields
o—2z\"9 A [7
po(z) = (1 — p)(U - 1) exp (;/1 1(u)du), 2] < o (12)

Since Z4(z) is analytic on {z € C: |z| < 0 + ¢}, so is exp (A I El(u)du). Let

(1]

fo:o ¢, 2" be the power series expansion of exp ( f1 =i ( du) at z =0, i.e.,

exp (% /12 El(u)du) = Z P2, 2| <o +6. (13)
n=0

—a
We note that (1 — p) (gj) has the power series expansion at z = 0:

(1_”)(2:;)_&:(1_”(071) ZI‘ atlil) T <o (1)

Substituting (13) and (14) into (12) yields

P(C:O,N:n)=(1—p)(g_1>azr(r(a+n_k) oF e, m=0,1,....

o a)l'(n—k+1)
Therefore,
P(C=0,N = -1 +n—kKln+1
( [(a+n) _n) (1=p (0 ) FZ+Z n—(Z+1§¢) 7
T(@T(n+1)

Following the same argument as in the proof of Theorem 1 in Kim et al. [10],
we get

i P(C;;?;)N :_:) =a _p)(U; 1>a§:¢kak
@M (n+D) 7 k=0
— (1 _p)(ac—r 1)"exp (%/1 El(u)du)

=T'(a)co. (15)

Since IF,EZJ:B ~n2"1 as n — oo, (10) follows from (15).

Next we prove (11). Substituting (8) and (9) into (7) yields

pi(2) :—w/(A—lAz; p))b’( ) — (Z:i)_a_le"p (%/1 El(“)d“)
+(1- p)(g — Z)_ Ha(z) exp (i\/lz El(u)du), |z| < 0. (16)

oc—1
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Now we consider the power series expansions of the two terms on the right-hand
side of (16) separately as follows:

—A(A - ilif)w(a) — (5= f)_H P (3 / Zi(w)du) = 3 pns",

n=0
(1- p)(z : i>_a52(z) exp (% /Z El(u)du> = i qn2".
1 n=0

By the same method which we used to derive (10), we obtain

Pn~cinc” " asn — oo,
Gn ~ coZa(0)n® o™ asn — oo.
Therefore ¢, = o(p,) as n — oo, and
P(C=1,N=n)=p,+ g, ~c1n%c" " asn — oo,
which completes the proof of (11). O

By Theorem 3.1, we have
P(N=n)~P(C=1,N=n) asn — oo,
P(C+N=n)~P(C=1,N=n—1) asn — oo.
Therefore, the following corollary is immediate.

Corollary 3.2. If (8) holds, then the queue size N and the number of customers
in the system, C + N, have distributions with the following tail asymptotics:

P(N=n)~cin% ™" asn— oo,
P(C + N =n) ~cin“c "™ asn — oo.

Remark 3.1. If b(z) = z (i.e., single arrival M/G/1 retrial queue), then Theo-
rem 3.1 reduces to Theorem 1 of Kim et al. [10].

4. Numerical examples

In this section numerical examples are presented to illustrate our results. We
consider the following batch arrival retrial queueing model.

Example 4.1. The batch arrival rate is A and the batch size has a geometric

distribution with probability mass function P(B = k) = (%)k, k=1,2,.... The
service times of the customers have an exponential distribution with mean 2.

2
The retrial rate is v = 10.

In Figs. 1 and 2, we plot the exact and asymptotic values of P(C' = i, N = n),
1= 0,1, for Example 4.1 with A = 0.6 and A = 0.8, respectively. The asymptotic
values of P(C'= 0, N = n) and P(C = 1, N = n) are obtained by using formulas
(10) and (11), respectively. The exact value is obtained as follows: It is known
that limg oo p,l(.f) = Pin, © = 0,1, where p;, =P(C =i, N =n) and pgf) is the
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FIGURE 1. Exact and asymptotic values of P(C = i, N = n),
i =0,1 when A = 0.6.
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FIGURE 2. Exact and asymptotic values of P(C' = i, N = n),
i =20,1 when A =0.8.

probability that the number of busy servers is ¢ and there are n customers in the
orbit at steady state in the corresponding queue with orbit of finite capacity K.

(K)

The probability p;, is obtained as p;,, ’ such that pgf ) does not vary numerically
as K increases. Figs. 1 and 2 show that the asymptotic formulas (10) and (11)

are very accurate.
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