• Title/Summary/Keyword: Dissipation rate

Search Result 463, Processing Time 0.025 seconds

Flame Hole Dynamics Model of a Diffusion Flame in Mixing Layer (혼합층에서의 확산화염에 대한 flame hole dynamics 모델)

  • Kim, Jun-Hong;Chung, S.H.;Kim, J.S.
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.223-227
    • /
    • 2003
  • The method of flame hole dynamics is demonstrated as a mean to simulate turbulent flame extinction. The core of the flame hole dynamics involves derivation of a random walk mapping for the flame holes, created by local quenching, between the burning and quenched states provided that the dynamic characteristics of flame edges is known. Then, the random walk mapping is projected to a background turbulent field. The numerical simulations are carried out with the further simplifications of flame string and unconditioned scalar dissipation rate. The simulation results show how the chance of partial quenching is influenced by the crossover scalar dissipation rate. Finally, a list of improvements, necessary to achieve more realistic turbulent flame quenching simulation, are discussed.

  • PDF

Direct Numerical Simulation of Turbulent new Around a Rotating Circular Cylinder at Low Reynolds Number (회전하는 원형단면 실린더 주위의 저 레이놀즈수 난류유동에 대한 직접수치모사)

  • Hwang Jong-Yeon;Yang Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1083-1091
    • /
    • 2005
  • Turbulent flow around a rotating circular cylinder is investigated by Direct Numerical Simulation. The calculation is performed at three cases of low Reynolds number, Re=161, 348 and 623, based on the cylinder radius and friction velocity. Statistically strong similarities with fully developed channel flow are observed. Instantaneous flow visualization reveals that the turbulence length scale typically decreases as Reynolds number increases. Some insight into the spacial characteristics in conjunction with wave number is provided by wavelet analysis. The budget of dissipation rate as well as turbulent kinetic energy is computed and particular attention is given to the comparison with plane channel flow.

Modification of Dissipation Rate Equation of Low Reynolds Number k-ε Model Accounting for Adverse Pressure Gradient Effect (역압력구배 영향을 고려한 저레이놀즈수 k-ε 모형의 소산율 방정식 수정)

  • Song, Kyoung;Cho, Kang Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1399-1409
    • /
    • 1999
  • It is known that previous models are unsatisfactory in predicting adverse pressure gradient turbulent flows. In the present paper, a revised low Reynolds number $k-{\varepsilon}$ model is proposed. In this model, a newly developed term is added lo the dissipation rate equation. In order to reflect appropriate effects for an adverse pressure gradient. The added tenn is derived by considering the distribution of mean velocity and turbulent properties in the turbulent flow with, adverse pressure gradient. The new $k-{\varepsilon}$ model was applied to calculations of flat plate flow with adverse pressure gradient, conical diffuser flow and backward facing step flow. It was found that the three numerical results showed better agreement than other models compared with DNS results and experimental ones.

Application of the Flame Hole Dynamics to a Diffusion Flame in Channel Flow

  • Lee, Su-Ryong;Yang Na;Kim, Jong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1775-1783
    • /
    • 2003
  • The method of flame hole dynamics is demonstrated as a mean to simulate turbulent flame extinction. The core of the flame hole dynamics involves derivation of a random walk mapping for the flame holes, created by local quenching, between burning and quenched states provided that the dynamic characteristics of flame edges is known. Then, the random walk mapping is projected to a background turbulent field. The numerical simulations are carried out with further simplifications of flame string and unconditioned scalar dissipation rate. The simulation results show how the chance of partial quenching is influenced by the crossover scalar dissipation rate. Finally, a list of improvements, necessary to achieve more realistic turbulent flame quenching simulation, are discussed.

A study on the performance of variable damper type suspension for tracked vehicle (가변댐퍼식 궤도차량용 현수장치의 성능에 관한 연구)

  • 이재순;김승무
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.3 no.2
    • /
    • pp.34-42
    • /
    • 1981
  • The feasibility of using fluidic components for improving certain performance characteristics of the suspension systems for tracked vehicle is investigated. This study describes three variable damping systems for which the damping coefficients are function of relative velocity and absolute a of the vehicle body. Through the comparison analysis between constant damping coefficient damper and each of variable dampers. the followings were found: (1)Fluidic Diode Damper gave less accelerations, (2)Both Fluidic Diode Damper and Relative Velocity Damper gave the less time for which the wheel is off the ground, (3) At low vehicle velocity Fluidic Diode Damper gave low energy dissipation rate, while at high vehicle velocity Turbulence Accelerometer Damper gave low energy dissipation rate.

  • PDF

Numerical analysis for Autoignition Characteristics of Turbulent Gaseous Jets in a High Pressure Environment (고압 분위기하에 분사된 메탄가스 제트의 자연점화 및 화염전파 특성 해석)

  • 김성구;유용욱;김용모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.81-89
    • /
    • 2002
  • The autoignition and subsequent flame propagation of initially nonpremixed turbulent system have been numerically analyzed. The unsteady flamelet modeling based on the RIF (representative interactive flamelet) concept has been employed to account for the influences of turbulence on these essentially transient combustion processes. In this RIF approach, the partially premixed burning, diffusive combustion and formation of pollutants(NOx, soot) can be consistently modeled by utilizing the comprehensive chemical mechanism. To treat the spatially distributed inhomogeneity of scalar dissipation rate, the multiple RIFs are employed in the framework of EPFM(Eulerian particle flamelet model) approach. Computations are made for the various initial conditions of pressure, temperature, and fuel composition. The present turbulent combustion model reasonably well predicts the essential features of autoignition process in the transient gaseous fuel jets injected into high pressure and temperature environment.

A low-Reynolds-number 4-equation heat transfer model for turbulent separated and reattaching flows (난류 박리 및 재부착 유동의 해석을 위한 저레이놀즈수 4-방정식 난류 열전달 모형의 개발)

  • Rhee Gwang-Hoon;Sung Hyung-Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.37-42
    • /
    • 1995
  • In the present study, an improved version of 4-equation low-Reynolds-number 4-equation model is proposed. The equations of the temperature variance ($k_{\theta}$) and its dissipation rate(${\varepsilon}_{\theta}$) are solved, in concert with the equations of the turbulent kinetic energy(k) and its dissipation rate(${\varepsilon}$). In the present model, the near-wall effect and the non-equilibrium effect are fully taken into consideration. The validation of the model is then applied to the turbulent flow behind a backward-facing step and the flow over a blunt body. The predicted results of the present model are compared and evaluated with the relevant experiments.

  • PDF

Boundary layer analysis of persistent moving horizontal needle in Blasius and Sakiadis magnetohydrodynamic radiative nanofluid flows

  • Krishna, Penem Mohan;Sharma, Ram Prakash;Sandeep, Naramgari
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1654-1659
    • /
    • 2017
  • The boundary layer of a two-dimensional forced convective flow along a persistent moving horizontal needle in an electrically conducting magnetohydrodynamic dissipative nanofluid was numerically investigated. The energy equation was constructed with Joule heating, viscous dissipation, uneven heat source/sink, and thermal radiation effects. We analyzed the boundary layer behavior of a continuously moving needle in Blasius (moving fluid) and Sakiadis (quiescent fluid) flows. We considered Cu nanoparticles embedded in methanol. The reduced system of governing Partial differential equations (PDEs) was solved by employing the Runge-Kutta-based shooting process. Computational outcomes of the rate of heat transfer and friction factors were tabulated and discussed. Velocity and temperature descriptions were examined with the assistance of graphical illustrations. Increasing the needle size did not have a significant influence on the Blasius flow. The heat transfer rate in the Sakiadis flow was high compared with that in the Blasius flow.

A Study of the Behaviors of Nourishing Sand on the Artificial Nourishment Beach (인공양빈해안의 해빈특성에 관한 연구)

  • 민병형;김가현;김진생
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.60-66
    • /
    • 1987
  • The object of this study is to investigate behaviors of beach fill replenished at three coasts of different configurations by analyzing successively measured beach profiles. The main results obtained in this study are summarized as follows; 1) The amount of nourishing sand moved in the longshore direction surpasses the amount of nourishing sand transported in the cross-shore direction regardless of shapes of the coasts and types of the structures. 2) A clear correlation between displacements of shoreline and changes of sectional areas can be found soon after the placement of beach fill in the fields. This implies that the deformation of the artificial nourishment and dissipation or remaining rate of nourishing sand can be predicated by the one-line theory. 3) The patterns of sediment movements in the artificially nourished beaches are clearly found by the analysis of empirical eignfuncitions.

  • PDF

Fabrication of High Performance and Low Power Readout Integrated Circuit for $320{\times}256$ IRFPA ($320{\times}256$ 초점면배열 적외선 검출기를 위한 고성능 저 전력 신호취득회로의 제작)

  • Kim, Chi-Yeon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.152-159
    • /
    • 2007
  • This paper describes the design, fabrication, and measurement of ROIC(ReadOut Integrated Circuit) for $320{\times}256$ IRFPA(InfraRed Focal Plane Array). A ROIC plays an important role that transfer photocurrent generated in a detector device to thermal image system. Recently, the high performance and low power ROIC adding various functions is being required. According to this requirement, the design of ROIC focuses on 7MHz or more pixel rate, low power dissipation, anti-blooming, multi-channel output mode, image reversal, various windowing, and frame CDS(Correlated Double Sampling). The designed ROIC was fabricated using $0.6{\mu}m$ double-poly triple-metal Si CMOS process. ROIC function factors work normally, and the power dissipation of ROIC is 33mW and 90.5mW at 7.5MHz pixel rate in the 1-channel and 4-channel operation, respectively.