References
- S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, Proc. ASME Int. Mech. Eng. Cong. Exp. 66 (1995) 99-105.
- M. Agarwal, R.P. Chhabra, V. Eswaran, Laminar momentum and thermal boundary layers of power-law fluids over a slender cylinder, Chem. Eng. Sci. 57 (2002) 1331-1341. https://doi.org/10.1016/S0009-2509(02)00013-1
- M. Kumari, G. Nath, Mixed convection boundary layer flow over a thin vertical cylinder with localized injection/surjection and cooling/heating, Int. J. Heat Mass Transfer 47 (2004) 969-976. https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.014
- A. Ishak, R. Nazar, I. Pop, Boundary layer flow over a continuously moving thin needle in a parallel free stream, Chin. Phys. Lett. 24 (2007) 2895-2897. https://doi.org/10.1088/0256-307X/24/10/051
- S. Ahmad, N.M. Arifin, R. Nazar, I. Pop, Mathematical modeling of boundary layer flow over a moving thin needle with variable heat flux, in: 12th WSEAS International Conference on Applied Mathematics, ACM digital library, 2007, pp. 48-53.
- H.S. Takhar, A.J. Chamkha, G. Nath, Combined heat and mass transfer along a vertical moving cylinder with a free stream, Heat Mass Transfer 36 (2000) 237-246. https://doi.org/10.1007/s002310050391
- T. Cebeci, T.Y. Na, Laminar free-convection heat transfer from a needle, Phys. Fluids 12 (1969) 463-465. https://doi.org/10.1063/1.1692503
- P.M. Patil, S. Roy, I. Pop, Unsteady effects on mixed convection boundary layer flow from a permeable slender cylinder due to non-linearly power law stretching, Comput. Fluids 56 (2012) 17-23. https://doi.org/10.1016/j.compfluid.2011.11.008
- R. Mehmood, S. Nadeem, S. Saleem, N.S. Akber, Flow and heat transfer analysis of a Jeffery nano fluid impinging obliquely over a stretched plate, J. Taiwan Inst. Chem. Eng. 74 (2017) 49-58. https://doi.org/10.1016/j.jtice.2017.02.001
- F.M. Hady, R. Mohamed, M.R. Abd-Elsalam, A. Mostafa Ahmed, The Blasius and Sakiadis flow in a nanofluids through porous medium in the presence of thermal radiation under a convective surface boundary condition, Int. J. Eng. Innov. Technol. 3 (2013) 225-243.
- O.D. Makinde, Analysis of Sakiadis flow of nanofluids with viscous dissipation and Newtonian heating, Appl. Math. Mech. 33 (2012) 1545-1554. https://doi.org/10.1007/s10483-012-1642-8
- O.D. Makinde, A. Aziz, Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition, Int. J. Therm. Sci. 50 (2011) 1326-1332. https://doi.org/10.1016/j.ijthermalsci.2011.02.019
- N. Sandeep, V. Sugunamma, P. Mohan Krishna, Effects of radiation on an unsteady natural convection flow of a EG-Nimonic 80a nanofluids past an infinite vertical plate, Adv. Phys. Theor. Appl. 23 (2013) 36-43.
- P. Mohan Krishna, V. Sugunamma, N. Sandeep, Radiation and magnetic field effects on unsteady natural convection flow of a nanofluid past an infinite vertical plate with heat source, Chem. Process. Eng. Res. 25 (2014) 39-52.
- N. Sandeep, Effect of aligned magnetic field on liquid thin film flow of magnetic-nanofluid embedded with graphene nanoparticles, Adv. Powder Technol. 28 (2017) 865-875. https://doi.org/10.1016/j.apt.2016.12.012
- P.O. Olanrewaju, J.A. Gbadeyan, O. Agboolanand, S.O. Abah, Radiation and viscous dissipation effects for the Blasius and Sakiadis flows with a convective surface boundary condition, Int. J. Adv. Sci. Technol. 2 (2010) 102-115.
- M. Awais, S. Saleem, T. Hayat, S. Irum, Hydromagnetic couple-stress nanofluid flow over a moving convective wall: OHAM analysis, Acta Astronaut 129 (2016) 271-276. https://doi.org/10.1016/j.actaastro.2016.09.020
- V. Ambethkar, Numerical solutions of heat and mass transfer effects of an unsteady MHD free convective flow past an infinite vertical plate with constant suction, J. Naval Architect. Marine Eng. 5 (2008) 7-36.
- S. Nadeem, A.U. Khan, S. Saleem, A comparative analysis on different nanofluid models for the oscillatory stagnation point flow, Eur. Phys. J. Plus 131 (2016) 261. https://doi.org/10.1140/epjp/i2016-16261-9
- P. Mohan Krishna, V. Sugunamma, N. Sandeep, Effects of radiation and chemical reaction on MHD boundary layer flow over a moving vertical porous plate with heat source, Adv. Phys. Theor. Appl. 26 (2013) 109-128.
- S.Y. Ibrahim, O.D. Makinde, Chemically reacting MHD boundary layer flow of heat and mass transfer over a moving vertical plate with suction, Sci. Res. Essays 5 (2010) 2875-2882.
- M. Sulochana, M.K. Kishore Kumar, N. Sandeep, Influence of aligned magnetic field on the flow through vertical surface in porous medium with heat source, Adv. Phys. Theor. Appl. 42 (2015) 33-45.
- E. Jones, M. Pravin Brijgopal, K. Rohan Ravindra, N. Sandeep, Aligned magnetic field, radiation and chemical reaction effects on MHD boundary layer flow over a moving vertical porous plate, Chem. Process. Eng. Res. 31 (2015) 89-103.
- W.A. Khan, I. Pop, Boundary layer flow of a nanofluid past a stretching sheet, Int. J. Heat Mass Transfer 53 (2010) 2477-2483. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032
- K. Bhattacharya, S. Mukhopadhyay, G.C. Layek, Unsteady MHD boundary layer flow with diffusion and first order chemical reaction over a permeable stretching sheet with suction or blowing, Chem. Eng. Commun. 200 (2013) 379-397. https://doi.org/10.1080/00986445.2012.712577
- G.K. Ramesh, B.J. Gireesha, C.S. Bagewadi, Convective heat transfer in a dusty fluid over a permeable surface with thermal radiation, Int. J. Nonlinear Sci. 14 (2012) 243-250.
- S. Sharidan, J. Mahmood, I. Pop, Similarity solutions for the unsteady boundary layer flow and heat transfer due to a stretching sheet, Int. J. Appl. Mech. Eng. 11 (2006) 647-654.
- S. Siddiqa, Gul-e-Hina, N. Begum, S. Saleem, M.A. Hossain, R.S.R. Gorla, Numerical solution of nanofluid bioconvection due to gyrotactic microorganisms along a vertical wavy cone, Int. J. Heat Mass Transfer 101 (2016) 608-613. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.076
- M. Gnaneswara Reddy, N. Sandeep, Computational modelling and analysis of heat and mass transfer in MHD flow past the upper part of a paraboloid of revolution, Eur. Phys. J. Plus 132 (2017) 222. https://doi.org/10.1140/epjp/i2017-11483-y
- M. Jayachandra Babu, N. Sandeep, UCM flow across a melting surface in the presence of double stratification and cross-diffusion effects, J. Mol. Liquids 232 (2017) 27-35. https://doi.org/10.1016/j.molliq.2017.02.063
- G. Kumaran, N. Sandeep, Thermophoresis and Brownian moment effects on parabolic flow of MHD Casson and Williamson fluids with cross diffusion, J. Mol. Liquids 233 (2017) 262-269. https://doi.org/10.1016/j.molliq.2017.03.031
Cited by
- Stability Analysis of Mixed Convection Flow towards a Moving Thin Needle in Nanofluid vol.8, pp.6, 2017, https://doi.org/10.3390/app8060842
- Magnetohydrodynamics Flow Past a Moving Vertical Thin Needle in a Nanofluid with Stability Analysis vol.11, pp.12, 2017, https://doi.org/10.3390/en11123297
- Homotopy analysis method for the Sakiadis flow of a thixotropic fluid vol.134, pp.1, 2017, https://doi.org/10.1140/epjp/i2019-12449-9
- Numerical Analysis of Boundary Layer Flow Adjacent to a Thin Needle in Nanofluid with the Presence of Heat Source and Chemical Reaction vol.11, pp.4, 2017, https://doi.org/10.3390/sym11040543
- Hybrid nanofluid flow and heat transfer past a vertical thin needle with prescribed surface heat flux vol.29, pp.12, 2017, https://doi.org/10.1108/hff-04-2019-0277
- Interaction of single and multi walls carbon nanotubes in magnetized-nano Casson fluid over radiated horizontal needle vol.2, pp.4, 2020, https://doi.org/10.1007/s42452-020-2523-8
- Thermal Transport of Hybrid Liquid over Thin Needle with Heat Sink/Source and Darcy-Forchheimer Porous Medium Aspects vol.45, pp.11, 2017, https://doi.org/10.1007/s13369-020-04853-4
- Magnetic field and Rotation effect on thermal stability in an Anisotropic couple-stress fluid saturated Porous Layer under presence of Cross-Diffusion vol.1849, pp.1, 2021, https://doi.org/10.1088/1742-6596/1849/1/012009
- Chebyshev collocation-optimization method for studying the Powell-Eyring fluid flow with fractional derivatives in the presence of thermal radiation vol.32, pp.11, 2017, https://doi.org/10.1142/s0129183121501527
- Thermal performance analysis of non‐Newtonian fluid transport through turbine discs vol.51, pp.1, 2022, https://doi.org/10.1002/htj.22315