DOI QR코드

DOI QR Code

On the performance of heat absorption/generation and thermal stratification in mixed convective flow of an Oldroyd-B fluid

  • Hayat, Tasawar (Department of Mathematics, Quaid-I-Azam University) ;
  • Khan, Muhammad Ijaz (Department of Mathematics, Quaid-I-Azam University) ;
  • Waqas, Muhammad (Department of Mathematics, Quaid-I-Azam University) ;
  • Alsaedi, Ahmed (Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University)
  • Received : 2017.06.07
  • Accepted : 2017.07.25
  • Published : 2017.12.25

Abstract

This investigation explores the thermally stratified stretchable flow of an Oldroyd-B material bounded by a linear stretched surface. Heat transfer characteristics are addressed through thermal stratification and heat generation/absorption. Formulation is arranged for mixed convection. Application of suitable transformations provides ordinary differential systems through partial differential systems. The homotopy concept is adopted for the solution of nonlinear differential systems. The influence of several arising variables on velocity and temperature is addressed. Besides this, the rate of heat transfer is calculated and presented in tabular form. It is noticed that velocity and Nusselt number increase when the thermal buoyancy parameter is enhanced. Moreover, temperature is found to decrease for larger values of Prandtl number and heat absorption parameter. Comparative analysis for limiting study is performed and excellent agreement is found.

Keywords

References

  1. M. Fakour, A. Vahabzadeh, D.D. Ganji, Scrutiny of mixed convection flow of a nanofluid in a vertical channel, Case Stud. Therm. Eng. 4 (2014) 15-23. https://doi.org/10.1016/j.csite.2014.05.003
  2. N.A. Othman, N.A. Yacob, N. Bachok, A. Ishak, I. Pop, Mixed convection boundary-layer stagnation point flow past a vertical stretching/shrinking surface in a nanofluid, Appl. Thermal Eng. 115 (2017) 1412-1417. https://doi.org/10.1016/j.applthermaleng.2016.10.159
  3. T. Hayat, M. Waqas, S.A. Shehzad, A. Alsaedi, Mixed convection radiative flow of Maxwell fluid near a stagnation point with convective condition, J. Mech. 29 (2013) 403-409. https://doi.org/10.1017/jmech.2013.6
  4. T. Hayat, M. Waqas, S.A. Shehzad, A. Alsaedi, Effects of Joule heating and thermophoresis on stretched flow with convective boundary conditions, Sci. Iran. B 21 (2014) 682-692.
  5. S.A. Shehzad, F.E. Alsaadi, T. Hayat, S.J. Monaquel, MHD mixed convection flow of thixotropic fluid with thermal radiation, ASME Heat Transfer Res. 45 (2014) 569-576. https://doi.org/10.1615/HeatTransRes.2014007109
  6. M. Waqas, M. Farooq, M.I. Khan, A. Alsaedi, T. Hayat, T. Yasmeen, Magnetohydrodynamic (MHD) mixed convection flow of micropolar liquid due to nonlinear stretched sheet with convective condition, Int. J. Heat Mass Transfer 102 (2016) 766-772. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.142
  7. T. Hayat, S. Qayyum, S.A. Shehzad, A. Alsaedi, Magnetohydrodynamic threedimensional nonlinear convection flow of Oldroyd-B nanoliquid with heat generation/absorption, J. Mol. Liq. 230 (2017) 641-651. https://doi.org/10.1016/j.molliq.2017.01.045
  8. W.A. Khan, M. Khan, R. Malik, Three-dimensional flow of an Oldroyd-B nanofluid towards stretching surface with heat generation/absorption, PLoS One 9 (2014), e105107. https://doi.org/10.1371/journal.pone.0105107
  9. T. Hayat, S. Ali, M.A. Farooq, A. Alsaedi, On comparison of series and numerical solutions for flow of EyringePowell fluid with Newtonian heating and internal heat generation/absorption, PLoS One 10 (2015), e0129613. https://doi.org/10.1371/journal.pone.0129613
  10. T. Hayat, F. Shah, A. Alsaedi, M.I. Khan, Development of homogeneous/heterogeneous reaction in flow based through non-Darcy Forchheimer medium, J. Theor. Comput. Chem. 16 (2017), 1750045. https://doi.org/10.1142/S0219633617500456
  11. B. Mahanthesh, B.J. Gireesha, R.S.R. Gorla, Heat and mass transfer effects on the mixed convective flow of chemically reacting nanofluid past a moving/stationary vertical plate, Alex. Eng. J. 55 (2016) 569-581. https://doi.org/10.1016/j.aej.2016.01.022
  12. T. Hayat, M. Waqas, M.I. Khan, A. Alsaedi, Impacts of constructive and destructive chemical reactions in magnetohydrodynamic (MHD) flow of Jeffrey liquid due to nonlinear radially stretched surface, J. Mol. Liq. 225 (2017) 302-310. https://doi.org/10.1016/j.molliq.2016.11.023
  13. T. Hayat, M. Sajid, I. Pop, Three-dimensional flow over a stretching surface in a viscoelastic fluid, Nonlinear Anal. Real World Appl. 9 (2008) 1811-1822. https://doi.org/10.1016/j.nonrwa.2007.05.010
  14. T. Hayat, N. Ahmed, M. Sajid, S. Asghar, On the MHD flow of a second grade fluid in a porous channel, Comput. Math. Appl. 54 (2007) 407-414. https://doi.org/10.1016/j.camwa.2006.12.036
  15. M.I. Khan, M. Waqas, T. Hayat, A. Alsaedi, A comparative study of Casson fluid with homogeneouseheterogeneous reactions, J. Colloid Interface Sci. 498 (2017) 85-90. https://doi.org/10.1016/j.jcis.2017.03.024
  16. N. Ali, T. Hayat, S. Asghar, Peristaltic flow of a Maxwell fluid in a channel with compliant walls, Chaos Solitons Fractals 39 (2009) 407-416. https://doi.org/10.1016/j.chaos.2007.04.010
  17. T. Hayat, M. Khan, M. Ayub, Exact solutions of flow problems of an Oldroyd-B fluid, Appl. Math. Comput. 151 (2004) 105-119.
  18. R. Ellahi, E. Shivanian, S. Abbasbandy, T. Hayat, Analysis of some magnetohydrodynamic flows of third-order fluid saturating porous space, J. Porous Media 18 (2015) 89-98. https://doi.org/10.1615/JPorMedia.v18.i2.10
  19. M. Turkyilmazoglu, Dual and triple solutions for MHD slip flow of non-Newtonian fluid over a shrinking surface, Comput. Fluid 70 (2012) 53-58. https://doi.org/10.1016/j.compfluid.2012.01.009
  20. M.I. Khan, T. Hayat, M. Waqas, A. Alsaedi, Outcome for chemically reactive aspect in flow of tangent hyperbolic material, J. Mol. Liq. 230 (2017) 143-151. https://doi.org/10.1016/j.molliq.2017.01.016
  21. M. Anand, J. Kwack, A. Masud, A new generalized Oldroyd-B model for blood flow in complex geometries, Int. J. Eng. Sci. 72 (2013) 78-88. https://doi.org/10.1016/j.ijengsci.2013.06.009
  22. T. Hayat, M.I. Khan, M. Farooq, A. Alsaedi, M. Waqas, T. Yasmeen, Impact of CattaneoeChristov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface, Int. J. Heat Mass Transfer 99 (2016) 702-710. https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.016
  23. M. Sajid, B. Ahmed, Z. Abbas, Steady mixed convection stagnation point flow of MHD Oldroyd-B fluid over a stretching sheet, J. Egypt. Math. Soc. 23 (2015) 440-444. https://doi.org/10.1016/j.joems.2014.05.013
  24. T. Hayat, M. Waqas, S.A. Shehzad, A. Alsaedi, On 2D stratified flow of an Oldroyd-B fluid with chemical reaction: an application of non-Fourier heat flux theory, J. Mol. Liq. 223 (2016) 566-571. https://doi.org/10.1016/j.molliq.2016.08.083
  25. S.S. Motsa, Z.G. Makukula, S. Shateyi, Numerical investigation of the effect of unsteadiness on three-dimensional flow of an Oldroyd-B fluid, PLoS One 10 (2015), e0133507. https://doi.org/10.1371/journal.pone.0133507
  26. T. Hayat, S. Farooq, A. Alsaedi, B. Ahmad, Numerical study for Soret and Dufour effects on mixed convective peristalsis of Oldroyd 8-constants fluid, Int. J. Thermal Sci. 112 (2017) 68-81. https://doi.org/10.1016/j.ijthermalsci.2016.10.003
  27. R. Kandasamy, I. Muhaimin, R. Mohamad, Thermophoresis and Brownian motion effects on MHD boundary-layer flow of a nanofluid in the presence of thermal stratification due to solar radiation, Int. J. Mech. Sci. 70 (2013) 146-154. https://doi.org/10.1016/j.ijmecsci.2013.03.007
  28. A. Zaib, S. Shafie, Thermal diffusion and diffusion thermo effects on unsteady MHD free convection flow over a stretching surface considering Joule heating and viscous dissipation with thermal stratification, chemical reaction and Hall current, J. Franklin Inst. 351 (2014) 1268-1287. https://doi.org/10.1016/j.jfranklin.2013.10.011
  29. T. Hayat, M. Zubair, M. Ayub, M. Waqas, A. Alsaedi, Stagnation point flow towards nonlinear stretching surface with CattaneoeChristov heat flux, Eur. Phys. J. Plus 131 (2016) 355. https://doi.org/10.1140/epjp/i2016-16355-4
  30. T. Hayat, M.I. Khan, M. Farooq, A. Alsaedi, M.I. Khan, Thermally stratified stretching flow with CattaneoeChristov heat flux, Int. J. Heat Mass Transfer 106 (2017) 289-294. https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.071
  31. M. Mamourian, K.M. Shirvan, R. Ellahi, A.B. Rahimi, Optimization of mixed convection heat transfer with entropy generation in a wavy surface square lid-driven cavity by means of Taguchi approach, Int. J. Heat Mass Transfer 102 (2016) 544-554. https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.056
  32. R. Ellahi, M. Hassan, A. Zeeshan, Aggregation effects on water base $Al_2O_3$-nanofluid over permeable wedge in mixed convection, Asia-Pac. J. Chem. Eng. 11 (2016) 179-186. https://doi.org/10.1002/apj.1954
  33. R. Ellahi, M. Hassan, A. Zeeshan, A.A. Khan, The shape effects of nanoparticles suspended in HFE-7100 over wedge with entropy generation and mixed convection, Appl. Nanosci 6 (2016) 641-651. https://doi.org/10.1007/s13204-015-0481-z
  34. S.J. Liao, Homotopic Analysis Method in Nonlinear Differential Equations, Springer, Heidelberg, Germany, 2012.
  35. T. Hayat, S. Qayyum, M. Imtiaz, A. Alsaedi, Impact of CattaneoeChristov heat flux in Jeffrey fluid flow with homogeneouseheterogeneous reactions, PLoS One 11 (2016), e0148662. https://doi.org/10.1371/journal.pone.0148662
  36. T. Hayat, M.I. Khan, M. Farooq, T. Yasmeen, A. Alsaedi, Stagnation point flow with CattaneoeChristov heat flux and homogeneouseheterogeneous reactions, J. Mol. Liq. 220 (2016) 49-55. https://doi.org/10.1016/j.molliq.2016.04.032
  37. M.I. Khan, T. Hayat, M.I. Khan, A. Alsaedi, A modified homogeneouseheterogeneous reactions for MHD stagnation flow with viscous dissipation and Joule heating, Int. J. Heat Mass Transfer 113 (2017) 310-317. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.082
  38. J. Sui, L. Zheng, X. Zhang, Boundary layer heat and mass transfer with CattaneoeChristov double-diffusion in upper-convected Maxwell nanofluid past a stretching sheet with slip velocity, Int. J. Thermal Sci. 104 (2016) 461-468. https://doi.org/10.1016/j.ijthermalsci.2016.02.007
  39. M.I. Khan, M. Waqas, T. Hayat, A. Alsaedi, Magnetohydrodynamic (MHD) stagnation point flow of Casson fluid over a stretched surface with homogeneouseheterogeneous reactions, J. Theor. Comput. Chem. 16 (2017), 1750022. https://doi.org/10.1142/S0219633617500225
  40. T. Hayat, M.I. Khan, M. Waqas, M.I. Khan, A. Alsaedi, Radiative flow of micropolar nanofluid accounting thermophoresis and Brownian moment, Int. J. Hydrogen Energy 42 (2017) 16821-16833. https://doi.org/10.1016/j.ijhydene.2017.05.006
  41. T. Hayat, M.I. Khan, M. Imtiaz, A. Alsaedi, Heat and mass transfer analysis in the stagnation region of Maxwell fluid with chemical reaction over a stretched surface, J. Thermal Sci. Eng. Appl. 10 (2017), 011002. https://doi.org/10.1115/1.4036768
  42. M.I. Khan, M.I. Khan, M. Waqas, T. Hayat, A. Alsaedi, Chemically reactive flow of Maxwell liquid due to variable thicked surface, Int. Commun. Heat Mass Transfer 86 (2017) 231-238. https://doi.org/10.1016/j.icheatmasstransfer.2017.06.003
  43. M.W.A. Khan, M. Waqas, M.I. Khan, A. Alsaedi, T. Hayat, MHD stagnation point flow accounting variable thickness and slip conditions, Colloid Polym. Sci. 295 (2017) 1201-1209. https://doi.org/10.1007/s00396-017-4111-z
  44. M.I. Khan, M. Waqas, T. Hayat, M.I. Khan, A. Alsaedi, Behavior of stratification phenomenon in flow of Maxwell nanomaterial with motile gyrotactic microorganisms in the presence of magnetic field, Int. J. Mech. Sci. 132 (2017) 426-434.
  45. M.S. Abel, J.V. Tawade, M.M. Nandeppanavar, MHD flow and heat transfer for the upper-convected Maxwell fluid over a stretching sheet, Meccanica 47 (2012) 385-393. https://doi.org/10.1007/s11012-011-9448-7
  46. A.M. Megahed, Variable fluid properties and variable heat flux effects on the flow and heat transfer in a non-Newtonian Maxwell fluid over an unsteady stretching sheet with slip velocity, Chin. Phys. B 22 (2013), 094701. https://doi.org/10.1088/1674-1056/22/9/094701
  47. K. Sadeghy, H. Hajibeygi, S.M. Taghavia, Stagnation-point flow of upperconvected Maxwell fluids, Int. J. Nonlinear Mech. 41 (2006) 1242-1247. https://doi.org/10.1016/j.ijnonlinmec.2006.08.005
  48. S. Mukhopadhyay, Heat transfer analysis of the unsteady flow of a Maxwell fluid over a stretching surface in the presence of a heat source/sink, Chin. Phys. Lett. 29 (2012), 054703. https://doi.org/10.1088/0256-307X/29/5/054703

Cited by

  1. Upshot of Chemical Species and Nonlinear Thermal Radiation on Oldroyd-B Nanofluid Flow Past a Bi-directional Stretched Surface with Heat Generation/Absorption in a Porous Media vol.70, pp.1, 2017, https://doi.org/10.1088/0253-6102/70/1/71
  2. Entropy optimization in cubic autocatalysis chemical reactive flow of Williamson fluid subjected to viscous dissipation and uniform magnetic field vol.26, pp.5, 2019, https://doi.org/10.1007/s11771-019-4082-y
  3. Effectiveness of improved Fourier-Fick laws in a stratified non-Newtonian fluid with variable fluid characteristics vol.29, pp.6, 2017, https://doi.org/10.1108/hff-12-2018-0716
  4. Optimizing the theoretical analysis of entropy generation in the flow of second grade nanofluid vol.94, pp.8, 2017, https://doi.org/10.1088/1402-4896/ab0f65
  5. Dissipative flow of hybrid nanomaterial with entropy optimization vol.6, pp.8, 2017, https://doi.org/10.1088/2053-1591/ab1b88
  6. Local similar solutions for flow of an oldroyd-b nanofluid with activation energy vol.29, pp.8, 2019, https://doi.org/10.1108/hff-12-2018-0755
  7. Irreversibility in two-dimensional magneto-nanomaterial flow of Jeffrey fluid with Arrhenius activation energy vol.29, pp.12, 2017, https://doi.org/10.1108/hff-12-2018-0805
  8. Impact of Temperature-Dependent Heat Source/Sink and Variable Species Diffusivity on Radiative Reiner-Philippoff Fluid vol.2020, pp.None, 2017, https://doi.org/10.1155/2020/9701860
  9. Influence of relaxation‐retardation viscous dissipation on chemically reactive flow of Oldroyd‐B nanofluid with hyperbolic boundary conditions vol.49, pp.8, 2017, https://doi.org/10.1002/htj.21861
  10. A nonlinear mathematical analysis for magneto-hyperbolic-tangent liquid featuring simultaneous aspects of magnetic field, heat source and thermal stratification vol.10, pp.12, 2017, https://doi.org/10.1007/s13204-020-01483-y