DOI QR코드

DOI QR Code

Effect of a chemical reaction on magnetohydrodynamic (MHD) stagnation point flow of Walters-B nanofluid with newtonian heat and mass conditions

  • Qayyum, Sajid (Department of Mathematics, Quaid-I-Azam University) ;
  • Hayat, Tasawar (Department of Mathematics, Quaid-I-Azam University) ;
  • Shehzad, Sabir A. (Department of Mathematics, COMSATS Institute of Information Technology) ;
  • Alsaedi, Ahmed (Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University)
  • Received : 2017.05.17
  • Accepted : 2017.07.25
  • Published : 2017.12.25

Abstract

The main purpose of this article is to describe the magnetohydrodynamic stagnation point flow of Walter-B nanofluid over a stretching sheet. The phenomena of heat and mass transfer are based on the involvement of thermal radiation and chemical reaction. Characteristics of Newtonian heating are given special attention. The Brownian motion and thermophoresis models are introduced in the temperature and concentration expressions. Appropriate variables are implemented for the transformation of partial differential frameworks into sets of ordinary differential equations. Plots for velocity, temperature, and nanoparticle concentration are displayed and analyzed for governing parameters. The skin friction coefficient and local Nusselt and Sherwood numbers are studied using numerical values. The temperature and heat transfer rate are enhanced within the frame of the thermal conjugate parameter.

Keywords

References

  1. S. Choi, Enhancing thermal conductivity of fluids with nanoparticle. In: Siginer, D. A., Wang, H. P. (Eds.), Developments and Applications of Non-Newtonian Flows, MD-vol. 231/FED-vol. 66. ASME, New York, 99-105.
  2. J. Buongiorno, Convective transport in nanofluids, J. Heat Transfer Trans. ASME 128 (2006) 240-250. https://doi.org/10.1115/1.2150834
  3. C. Zhang, L. Zheng, X. Zhang, G. Chen, MHD flow and radiation heat transfer of nanofluids in porous media with variable surface heat flux and chemical reaction, Appl. Math. Model 39 (2015) 165-181. https://doi.org/10.1016/j.apm.2014.05.023
  4. S. Nadeem, R.U. Haq, Z.H. Khan, Numerical study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of nanoparticles, J. Taiwan Instit. Chemi. Eng. 45 (2014) 122-126.
  5. R.U. Haq, S. Nadeem, Z.H. Khan, N.S. Akbar, Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet, Physica E Low-Dimens. Syst. Nanostruct 65 (2015) 17-23. https://doi.org/10.1016/j.physe.2014.07.013
  6. B.J. Gireesha, R.S.R. Gorla, B. Mahanthesh, Effect of suspended nanoparticles on three-dimensional MHD flow, heat and mass transfer of radiating Eyring- Powell fluid over a stretching sheet, J. Nanofluids 4 (2015) 474-484. https://doi.org/10.1166/jon.2015.1177
  7. B. Mahanthesh, B.J. Gireesha, R.S.R. Gorla, F.M. Abbasi, S.A. Shehzad, Numerical solutions for magnetohydrodynamic flow of nanofluid over a bidirectional non-linear stretching surface with prescribed surface heat flux boundary, J. Magn. Magn. Mater. 417 (2016) 189-196. https://doi.org/10.1016/j.jmmm.2016.05.051
  8. M. Mustafa, J.A. Khan, T. Hayat, A. Alsaedi, Buoyancy effects on the MHD nanofluid flow past a vertical surface with chemical reaction and activation energy, Int. J. Heat Mass Transf. 108 (2017) 1340-1346. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.029
  9. T. Hayat, S. Qayyum, S.A. Shehzad, A. Alsaedi, Simultaneous effects of heat generation/absorption and thermal radiation in magnetohydrodynamics (MHD) flow of Maxwell nanofluid towards a stretched surface, Results Phys. 7 (2017) 562-573. https://doi.org/10.1016/j.rinp.2016.12.009
  10. X. Si, H. Li, L. Zheng, Y. Shen, X. Zhang, A mixed convection flow and heat transfer of pseudo-plastic power law nanofluids past a stretching vertical plate, Int. J. Heat Mass Transf. 105 (2017) 350-358. https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.106
  11. S.T. Hussain, R.U. Haq, Z.H. Khan, S. Nadeem, Water driven flow of carbon nanotubes in a rotating channel, J. Mol. Liq. 214 (2016) 136-144. https://doi.org/10.1016/j.molliq.2015.11.042
  12. R.U. Haq, N.F.M. Noor, Z.H. Khan, Numerical simulation of water based magnetite nanoparticles between two parallel disks, Adv. Pow. Tech. 27 (2016) 1568-1575. https://doi.org/10.1016/j.apt.2016.05.020
  13. K. Hsiao, Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet, Appl. Thermal Eng. 98 (2016) 850-861. https://doi.org/10.1016/j.applthermaleng.2015.12.138
  14. B. Mahanthesh, F. Mabood, B.J. Gireesha, R.S.R. Gorla, Effects of chemical reaction and partial slip on the three dimensional flow of a nanofluid impinging on an exponentially stretching surface, Eur. Phys. J. Plus 132 (2017) 113. https://doi.org/10.1140/epjp/i2017-11389-8
  15. B. Mahanthesh, B.J. Gireesha, R.S.R. Gorla, Heat and mass transfer effects on the mixed convective flow of chemically reacting nanofluid past a moving/stationary vertical plate, Alex. Eng. J. 55 (2016) 569-581. https://doi.org/10.1016/j.aej.2016.01.022
  16. T. Hayat, S. Qayyum, A. Alsaedi, S.A. Shehzad, Nonlinear thermal radiation aspects in stagnation point flow of tangent hyperbolic nanofluid with double diffusive convection, J. Mol. Liq. 223 (2016) 969-978. https://doi.org/10.1016/j.molliq.2016.08.102
  17. T. Hayat, S. Qayyum, M. Imtiaz, A. Alsaedi, Comparative study of silver and copper water nanofluids with mixed convection and nonlinear thermal radiation, Int. J. Heat Mass Transf. 10 (2016) 723-732.
  18. S.A. Shehzad, Z. Abdullah, F.M. Abbasi, T. Hayat, A. Alsaedi, Magnetic field effect in three-dimensional flow of an Oldroyd-B nanofluid over a radiative surface, J. Magn. Magn. Mater. 399 (2016) 97-108. https://doi.org/10.1016/j.jmmm.2015.09.001
  19. D.W. Beard, K. Walters, Elastico-viscous boundary layer flows, Proc. Cambridge Philos. Soc. 60 (1964) 667-674.
  20. M.M. Nandeppanavar, M.S. Abel, J. Tawade, Heat transfer in aWalter's liquid B fluid over an impermeable stretching sheet with non-uniform heat source/sink and elastic deformation, Commun. Nonlinear Sci. Numer. Simulat. 15 (2010) 1792-1802.
  21. A.K.A. Hakeem, N.V. Ganesh, B. Ganga, Effect of heat radiation in a Walter's liquid B fluid over a stretching sheet with non-uniform heat source/sink and elastic deformation, J. King Saud Uni. Eng. Sci. 26 (2014) 168-175.
  22. T. Hayat, S. Asad, M. Mustafa, H.H. Alsulami, Heat transfer analysis in the flow of Walters-B fluid with a convective boundary condition, Chin. Phys. B 23 (2014) 084701. https://doi.org/10.1088/1674-1056/23/8/084701
  23. M. Javed, T. Hayat, M. Mustafa, B. Ahmad, Velocity and thermal slip effects on peristaltic motion of Walters-B fluid, Int. J. Heat Mass Transf. 96 (2016) 210-217. https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.029
  24. T. Hayat, S. Qayyum, A. Alsaedi, B. Ahmad, Magnetohydrodynamic (MHD) nonlinear convective flow of Walters-B nanofluid over a nonlinear stretching sheet with variable thickness, Int. J. Heat Mass Transf. 110 (2017) 506-514. https://doi.org/10.1016/j.ijheatmasstransfer.2017.02.082
  25. O.D. Makinde, Computational modelling of MHD unsteady flow and heat transfer toward a flat plate with Navier slip and Newtonian heating, Braz. J. Chem. Eng. 29 (2012) 159-166. https://doi.org/10.1590/S0104-66322012000100017
  26. S.A. Shehzad, T. Hayat, M.S. Alhuthali, S. Asghar, MHD three-dimensional flow of Jeffrey fluid with Newtonian heating, J. Cent. South Uni. 21 (2014) 1428-1433. https://doi.org/10.1007/s11771-014-2081-6
  27. M. Ramzan, M. Farooq, W. Cui, T. Hayat, Three dimensional flowof an Oldroyd-B fluid with Newtonian heating, Int. J. Heat Fluid Flow 25 (2015) 68-85. https://doi.org/10.1108/HFF-03-2014-0070
  28. T. Hayat, G. Bashir, M. Waqas, A. Alsaedi, MHD flow of Jeffrey liquid due to a nonlinear radially stretched sheet in presence of Newtonian heating, Result Phys. 6 (2016) 817-823. https://doi.org/10.1016/j.rinp.2016.10.001
  29. S. Liao, Homotopy analysis method in nonlinear differential equations, Springer & Higher Education Press, 2012.
  30. T. Hayat, M. Sajid, I. Pop, Three-dimensional flow over a stretching surface in a viscoelastic fluid, Nonlinear Anal. Real World Appl. 9 (2008) 1812-1822.
  31. Z. Ziabakhsh, G. Domairry, H. Bararnia, Analytical solution of non-Newtonian micropolar fluid flow with uniform suction/blowing and heat generation, J. Taiwan Inst. Chem. Eng. 40 (2009) 443-451. https://doi.org/10.1016/j.jtice.2008.12.005
  32. S.M. Moghimi, G. Domairry, S. Soleimani, E. Ghasemi, H. Bararnia, Application of homotopy analysis method to solve MHD Jeffery-Hamel flows in nonparallel walls, Adv. Eng. Software 42 (2011) 108-113. https://doi.org/10.1016/j.advengsoft.2010.12.007
  33. M. Waqas, M. Farooq, M.I. Khan, A. Alsaedi, T. Hayat, T. Yasmeen, Magnetohydrodynamic (MHD) mixed convection flow of micropolar liquid due to nonlinear stretched sheet with convective condition, Int. J. Heat Mass Transf. 102 (2016) 766-772. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.142
  34. O.A. Arqub, A. El-Ajou, Solution of the fractional epidemic model by homotopy analysis method, J. King Saud Univ. Sci. 25 (2013) 73-81. https://doi.org/10.1016/j.jksus.2012.01.003
  35. T. Hayat, S. Qayyum, A. Alsaedi, A. Shafiq, Inclined magnetic field and heat source/sink aspects in flow of nanofluid with nonlinear thermal radiation, Int. J. Heat Mass Transf. 103 (2016) 99-107. https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.055
  36. J. Sui, L. Zheng, X. Zhang, G. Chen, Mixed convection heat transfer in power law fluids over a moving conveyor along an inclined plate, Int. J. Heat Mass Transf. 85 (2015) 1023-1033. https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.014
  37. T. Hayat, S. Qayyum, A. Alsaedi, S. Asghar, Radiation effects on the mixed convection flow induced by an inclined stretching cylinder with non-uniform heat source/sink, PLoS One 12 (2017), e0175584. https://doi.org/10.1371/journal.pone.0175584
  38. S. Abbasbandy, M. Yurusoy, H. Gulluce, Analytical solutions of non-linear equations of power-law fluids of second grade over an infinite porous plate, Math. Compu. App. 19 (2014) 124-133.
  39. T. Hayat, S. Qayyum, A. Alsaedi, M. Waqas, Radiative flow of tangent hyperbolic fluid with convective conditions and chemical reaction, Eur. Phys. J. Plus 131 (2016) 422. https://doi.org/10.1140/epjp/i2016-16422-x
  40. S. Qayyum, T. Hayat, A. Alsaedi, B. Ahmad, MHD nonlinear convective flow of thixotropic nanofluid with chemical reaction and Newtonian heat and mass conditions, Results Phy. 7 (2017) 2124-2133. https://doi.org/10.1016/j.rinp.2017.06.010

Cited by

  1. Darcy-Forchheimer flow of micropolar nanofluid between two plates in the rotating frame with non-uniform heat generation/absorption vol.10, pp.10, 2017, https://doi.org/10.1177/1687814018808850
  2. Stability analysis on the stagnation-point flow and heat transfer over a permeable stretching/shrinking sheet with heat source effect vol.28, pp.11, 2017, https://doi.org/10.1108/hff-01-2018-0031
  3. Simulation of nanofluid thermal radiation in Marangoni convection flow of non-Newtonian fluid : A revised model vol.29, pp.8, 2017, https://doi.org/10.1108/hff-11-2018-0704
  4. Dual solutions for three-dimensional magnetohydrodynamic nanofluid flow with entropy generation vol.6, pp.4, 2017, https://doi.org/10.1016/j.jcde.2019.01.003
  5. A mathematical framework on Cattaneo-Christov model over an incessant moving needle vol.17, pp.1, 2017, https://doi.org/10.1108/mmms-01-2020-0012
  6. Williamson nanofluid flow through porous medium in the presence of melting heat transfer boundary condition: semi-analytical approach vol.17, pp.1, 2017, https://doi.org/10.1108/mmms-12-2019-0225
  7. Activation energy and binary chemical reaction effect in nonlinear thermal radiative stagnation point flow of Walter-B nanofluid: Numerical computations vol.34, pp.13, 2017, https://doi.org/10.1142/s0217979220501325
  8. Effect of thermal radiation on MHD Casson fluid flow over an exponentially stretching curved sheet vol.140, pp.5, 2017, https://doi.org/10.1007/s10973-019-08977-0
  9. Bioconvective peristaltic flow of a third-grade nanofluid embodying gyrotactic microorganisms in the presence of Cu-blood nanoparticles with permeable walls vol.17, pp.2, 2017, https://doi.org/10.1108/mmms-02-2020-0025
  10. Impacts of Newtonian heating, variable fluid properties and Cattaneo-Christov model on MHD stagnation point flow of Walters’ B fluid induced by stretching surface vol.31, pp.9, 2017, https://doi.org/10.1142/s0129183120501259
  11. Computational study of Falkner–Skan flow of chemically reactive Cross nanofluid with heat generation/absorption vol.554, pp.None, 2017, https://doi.org/10.1016/j.physa.2020.124267
  12. Arrhenius Activation and Zero Mass Flux Conditions on Nonlinear Convective Jeffrey Fluid over an Electrically Conducting and Radiated Sheet vol.45, pp.11, 2020, https://doi.org/10.1007/s13369-020-04687-0
  13. Investigation of Effects of Thermal Radiation, Magnetic Field, Eckert Number, and Thermal Slip on MHD Hiemenz Flow by Optimal Homotopy Asymptotic Method vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/5590657
  14. Computational Behavior of Second Law Poiseuille Flow of Micropolar Fluids in a Channel: Analytical Treatment vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/9945319
  15. The influence of variable electrical conductivity on non-Darcian Casson nanofluid flow with first and second-order slip conditions vol.4, pp.None, 2021, https://doi.org/10.1016/j.padiff.2021.100084
  16. An Analytical Study of Internal Heating and Chemical Reaction Effects on MHD Flow of Nanofluid with Convective Conditions vol.11, pp.12, 2017, https://doi.org/10.3390/cryst11121523