• Title/Summary/Keyword: Displacement-Based Design accuracy

Search Result 77, Processing Time 0.026 seconds

Seismic performance evaluation of a building structure using direct displacement-based design method (직접변위설계법을 이용한 건축물의 지진응답 산정)

  • 김진구;방성혁
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.569-576
    • /
    • 2001
  • In this study a procedure for evaluation of performance point using direct displacement-based design method was developed to enhance the applicability of the method. Parametric study has been performed for the natural period of the structure, yield strength, and the stiffness after the first yield. The proposed method was also applied to a 10-story steel frame. To verify the accuracy of the result, the results from capacity spectrum analysis and time history analysis were compared. The results of the proposed method turned out to match well with the results of capacity spectrum method and the time history analysis.

  • PDF

Research on diagnosis method of centrifugal pump rotor faults based on IPSO-VMD and RVM

  • Liang Dong ;Zeyu Chen;Runan Hua;Siyuan Hu ;Chuanhan Fan ;xingxin Xiao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.827-838
    • /
    • 2023
  • Centrifugal pump is a key part of nuclear power plant systems, and its health status is critical to the safety and reliability of nuclear power plants. Therefore, fault diagnosis is required for centrifugal pump. Traditional fault diagnosis methods have difficulty extracting fault features from nonlinear and non-stationary signals, resulting in low diagnostic accuracy. In this paper, a new fault diagnosis method is proposed based on the improved particle swarm optimization (IPSO) algorithm-based variational modal decomposition (VMD) and relevance vector machine (RVM). Firstly, a simulation test bench for rotor faults is built, in which vibration displacement signals of the rotor are also collected by eddy current sensors. Then, the improved particle swarm algorithm is used to optimize the VMD to achieve adaptive decomposition of vibration displacement signals. Meanwhile, a screening criterion based on the minimum Kullback-Leibler (K-L) divergence value is established to extract the primary intrinsic modal function (IMF) component. Eventually, the factors are obtained from the primary IMF component to form a fault feature vector, and fault patterns are recognized using the RVM model. The results show that the extraction of the fault information and fault diagnosis classification have been improved, and the average accuracy could reach 97.87%.

Design of Supplemental Dampers for Seismic Reinforcement of Structures (구조물의 내진보강을 위한 부가 감쇠장치의 설계)

  • Kim, Jin-Koo;Choi, Hyun-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.109-119
    • /
    • 2004
  • A design procedure for velocity-dependent supplemental dampers, such as viscous or viscoelastic dampers, required to meet the desired performance objectives was developed using displacement spectra. The amount of supplemental damping required to satisfy given performance limit state was obtained first from the nonlinear static procedure using displacement spectra, then dampers were appropriately distributed throughout the stories to realize the required damping. The proposed method was applied to multi-story steel frames, and the structures were analyzed by time history analysis to validate the accuracy of the design procedure. According to the analysis results the maximum displacements of the model structures retrofitted by the supplemental dampers turned out to be restrained well within the given target values.

Use of design optimization techniques in solving typical structural engineering related design optimization problems

  • Fedorik, Filip;Kala, Jiri;Haapala, Antti;Malaska, Mikko
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1121-1137
    • /
    • 2015
  • High powered computers and engineering computer systems allow designers to routinely simulate complex physical phenomena. The presented work deals with the analysis of two finite element method optimization techniques (First Order Method-FOM and Subproblem Approximation Method-SAM) implemented in the individual Design Optimization module in the Ansys software to analyze the behavior of real problems. A design optimization is a difficult mathematical process, intended to find the minimum or maximum of an objective function, which is mostly based on iterative procedure. Using optimization techniques in engineering designs requires detailed knowledge of the analyzed problem but also an ability to select the appropriate optimization method. The methods embedded in advanced computer software are based on different optimization techniques and their efficiency is significantly influenced by the specific character of a problem. The efficiency, robustness and accuracy of the methods are studied through strictly convex two-dimensional optimization problem, which is represented by volume minimization of two bars' plane frame structure subjected to maximal vertical displacement limit. Advantages and disadvantages of the methods are described and some practical tips provided which could be beneficial in any efficient engineering design by using an optimization method.

Precision Surface Profiling of Lens Molds using a Non-contact Displacement Sensor (비접촉 변위센서를 이용한 초소형렌즈 정밀금형 형상측정)

  • Kang, Seung-Hoon;Jang, Dae-Yoon;Lee, Joohyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.2
    • /
    • pp.69-74
    • /
    • 2020
  • In this study, we proposed a method for surface profiling aspheric lens molds using a precision displacement sensor with a spatial scanning mechanism. The precision displacement sensor is based on the confocal principle using a broadband light source, providing a 10 nm resolution over a 0.3 mm measurable range. The precision of the sensor, depending on surface slope, was evaluated via Allan deviation analysis. We then developed an automatic surface profiling system by measuring the cross-sectional profile of a lens mold. The precision of the sensor at the flat surface was 10 nm at 10 ms averaging time, while 200 ms averaging time was needed for identical precision at the steepest slope at 25 deg. When we compared the measurement result of the lens mold to a commercial surface profiler, we found that the accuracy of the developed system was less than 90 nm (in terms of 3 sigmas of error) between the two results.

Study on the geometrical nonlinearity of the hinge mechanism used in a piezoactuator (압전구동기에 사용되는 힌지 메커니즘의 기구학적 비선형성에 관한 연구)

  • 김준형;김수현;곽윤근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1638-1642
    • /
    • 2003
  • Piezoactuator using a flexure hinge mechanism is often used in the precision stages. When the total size of the hinge mechanism become small compared with the deformation of the hinge mechanism, the geometrical nonlinearity makes a considerable error in the output displacement. In this research, the incremental method based on the matrix method is developed to model the effect of the geometrical nonlinearity. Developed modeling method is applied to derive the error of output displacement of the bridge-type hinge mechanism and its results are derived with respect to the design parameters. This method can be easily used to the design optimization of the hinge mechanism and analysis results show that the geometrical nonlinearity error should be considered to achieve a high accuracy to the piezoactuators.

  • PDF

Design Sensitivity Analysis of Coupled Thermo-elasticity Problems

  • Choi Jae-yeon;Cho Seonho
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.3
    • /
    • pp.50-60
    • /
    • 2004
  • In this paper, a continuum-based design sensitivity analysis (DSA) method is developed for the weakly coupled thermo-elasticity problems. The temperature and displacement fields are described in a common domain. Boundary value problems such as an equilibrium equation and a heat conduction equation in steady state are considered. The direct differentiation method of continuum-based DSA is employed to enhance the efficiency and accuracy of sensitivity computation. We derive design sensitivity expressions with respect to thermal conductivity in heat conduction problem and Young's modulus in equilibrium equation. The sensitivities are evaluated using the finite element method. The obtained analytical sensitivities are compared with the finite differencing to yield very accurate results. Extensive developments of this method are useful and applicable for the optimal design problems incorporating welding and thermal deformation problems.

Position Control of a Pneumatic Cylinder Actuator using PLC and Proximity Sensors (공압 실린더 액츄에이터 위치제어)

  • Kwon, Soon-Hong;Choi, Won-Sik;Chung, Sung-Won;Park, Jong-Min;Kwon, Soon-Goo;So, Jung-Duk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.50-55
    • /
    • 2011
  • The fluid power products are widely used in current industrial area such as automation of products and equipment assembly, high-tech machine tool, aircraft, train, and etc. As the development of industry is in progress, the development of the fluid power products is demanding and it is required in every industrial area. This research proposed a pneumatic system to evaluate displacement accuracy of the pneumatic actuator without external load and to analyze capability of integration of the valve system. The pneumatic system consisted of a combination of pneumatic actuator, four two-port valves, two three-port valves, two pressure valve, a check valve, two proximity sensors, and a program logic controller (PLC). The position controller is based on the PLC connected with the proximity sensors. The maximum air pressure applied for tests was $49.05N/cm^2$ and the displacement accuracy of a stroke was measured using a dial gauge. The supply- and discharge-side of air pressure and the length of the stroke of the pneumatic cylinder were varied The test of the position control of the pneumatic cylinder was carried out 50 times at each supply- and discharge-side air pressure of 24.53/34.34, 29.43/39.24, 34.34/44.15, and $39.24/49.05N/cm^2$ and replicated three times. The accuracy of the displacement of the pneumatic cylinder stroke increased as the supply- and discharge-side of air pressure increased with the stroke length of 133mm. Also the displacement accuracy increased as the stroke length increased with the fixed supply- and discharge-side of air pressure of the pneumatic cylinder as 34.34 and $44.15N/cm^2$, respectively. The most accurate displacement of the pneumatic cylinder was obtained at the supplyand discharge-side of air pressure of 39.24 and $49.05N/cm^2$, respectively, and strokes of 170 and 190mm.

Design Evaluation of WEDM Based on Deformation Analyses and Axiomatic Design (변형해석 및 공리적 설계에 의한 와이어 방전가공기의 설계평가)

  • Lee, Hyeong-Il;U, Sang-U;Kim, Ju-Won;Kim, Chung-Yeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.851-863
    • /
    • 2002
  • Recent industrial requirements for highly precise shape processing have brought the electric discharge machining (EDM) in great need. High precision in EDM is primarily achieved by high performance controllers. However there exists inherent precision loss due to structural micro-deformation. On this background, we study structural deformation characteristics of wire cut EDM via finite element (FE) analysis and axiomatic design. Two different wire cut EDMs are selected as analysis models. 3D CAD package I-Deas is first used to construct FE models of wire cut EDMs, and then ABAQUS FE code is used for following structural analysis. Pertinency of FE mesh refinement is discussed in terms of η -factor. It is shown that performance accuracy of EDM depends strongly on the structural characteristics. Some design enhancements are suggested in an axiomatic design point of view. Finally we provide weight and temperature induced displacement discrepancies between wire end points as position functions of each subframe.

Development of Design Formulas for Pipe Loops Used in Ships Considering the Curvature of Corners (코너부 곡률을 고려한 선박용 파이프 루프 설계식 개발)

  • Park, Chi-Mo;Yang, Park-Dal-Chi
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.91-99
    • /
    • 2009
  • Many longitudinally arranged pipes in ships are subject to considerable displacement loads caused by the hull girder bending of ships and/or thermal loads in some special pipes through which fluids with highly abnormal temperatures are conveyed. As these loads may cause failure in the pipes or their supporting structures, loops have been widely adopted as a measure to prevent such failure, with the idea that they can lower the stress level in a pipe by absorbing some portion of these loads. But since such loops have some negative effects, such as causing extra manufacturing cost and occupying extra space, the number and dimensions of the loops need to be minimized. This research developed design formulas for pipe loops, modeling them as a spring element, for which the axial stiffness is calculated based on the beam theory, incorporating the effects of the curvature of loop corners and the flexibility of the straight portion of the pipe. The accuracy of the proposed design formulas was verified by comparing two results respectively obtained by the proposed formulas and MSC/NASTRAN. The paper ends with a sample application of the proposed formulas showing their efficiency.